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FINAL REPORT
Automatic Target Detection
And Recognition:

A Wavelet Based Approach
ARPA Grant F49620-93-1-0490

A. J. Devaney
R. S. Raghavan
H. Lev-Ari
E. S. Manolakos
M. Kokar
Department of Electrical and Computer Engineering

Northeastern University
Boston, MA 02115

January 25, 1997

Objectives and Status

This project had a start date of September 1, 1993 and ended on 31 August, 1996. The funding levels
were § 148,495 for the six month period 9/1/93-2/28/94, $ 298,515 for 3/1/94-2/28/95, $ 303,987
for 3/1/95-2/28/96, and funding of § 154,905 for the final six months 3/1/96-9/1/96. The PI for the
project is Professor Tony Devaney and the other principles are Professors Ram Raghavan, Hanoch
Lev-Ari, Elias Manolakos, and Mitch Kokar all from the Department of Electrical and Computer
Engineering at Northeastern University

The overall objective of the project is to develop, test and evaluate wavelet based algorithms
for automatic target detection and identification. The work and results obtained can be roughly
broken down into three sub-areas:

o Wavelet based scale recursive and scale sequential algorithms for HRR and SAR,

e Algorithms and Architectures for fast and efficient computation of Discrete Wavelet Trans-

forms,
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e Wavelet based sensor fusion algorithms.

Major Accomplishments

e ATR scale sequential and recursive algorithms have been developed for high range resolution
radar (HRR) that operate at near optimum performance levels with computation times orders
of magnitude below conventional fine scale maximum likelihood based algorithms. These
algorithms have been extended to the detection of electronic signals in ELINT operations.
Professor Devaney has presented this work at a number of ARPA sponsored workshops as
well as at other meetings such as at a special workshop on ATR held at Phillips Laboratory
in Albuquerque in the summer of 1995. He also presented a three hour tutorial on this and
related work at the National Security Agency in February 1996.

e Multi-resolution based ATR algorithm has been generalized to cases where a target to be
detected /recognized is described only in terms of the various scales that make up the target
signature. Knowledge of the actual target signature within each scale is not required in
this formulation. The approach has several features that make it attractive for the ATD/R
application: (i) Test for target presence in each scale associated with the signal subspace
is carried out independently, (ii) the false alarm probability for each scale may be specified
independently and (iii) the approach offers a greater degree of protection against missing a
target since the exact signature of the target is not required in the algorithm. Professor
Raghavan has presented this and related work at Lincoln Laboratories in March of 1996 and
at Rome Laboratories at Hanscom AFB in September 1995.

e An analytical framework for optimal design of MSE (Wiener) filters in the multiresolution
(subband) domain has been developed that exhibits excellent cost-performance tradeoff, and
is capable of achieving significant reduction in implementation cost with only a minor degra-
dation in performance. The design is based on the notions of: (i) scale-recursiveness, (i) sparse
estimation, and (ii) optimized front-end tree-structured filter bank configurations and it has
been shown that the key to efficient cost-performance tradeoff when using sparse estimation
is the reduction of overlap between adjacent channels of the filter bank. This can be achieved
by a suitable selection of the prototype filter bank response.

e M. Kokar and students developed a feature selection method based on model theory have
implemented this scheme in the Automatic Feature Based Recognition System (AFBRS).
The method has been tested on simulated ATR dataand the performance was compared with
the recognition method described by Coifman and Saito. In these tests the method showed
better recognition accuracy without introducing additional computational cost. We have also
obtained reduced dimensionality of input data through model-theory based feature selection.

o The synthesis of parallel computational structures for the Discrete Wavelet Transform (DWT),
starting from a thorough and systematic algorithmic data-dependence analysis was investi-
gated by Prof. Elias S. Manolakos and graduate students. Improving algorithm performance
through parallelism has been addressed from two points of view: By optimizing aggregate
throughput in a series of problem instances by means of modular VLSI architectures having a




small number of processing elements (PEs); and by means of scalable algorithms for parallel
supercomputers having a large number of PEs and a fixed interconnection network, where
the object is to minimize execution time of a single, potentially very large problem instance
typical of SAR image processing. A family of modular application specific VLSI architectures
was derived for the DWT as well as a family of parallel DWT algorithms for Linear, Mesh,
and Hypercube processor networks. All parallel algorithms have been evaluated in terms of
their theoretical and practical scalability properties.

e Model-Based Target Recognition was investigated within the framework of parameter estima-
tion of hierarchical mixture densities by Professor Elias S. Manolakos and graduate students.
An appropriately modified version of the Expectation-Maximization (EM) algorithm was in-
troduced that generates estimates of the posterior probability of target presence in an image.
The EM was extended to multiple level mixture hierarchies in order to deal with target trans-
lation and scale invariance. The approach can account for the non-stationary statistics of the
input image as well as different noise models, two aspects that are very important for ATR.
Our simulation results suggest that the scheme works very well even in the case of partially
occluded targets presented at scales for which templates are not available.

e A large number of journal and conference papers have been produced detailing the work
performed on this project. In addition, five M.S. theses have been produced and another M.S,
and three doctoral theses are in progress.

Publications

o A.J. Devaney and K. Riley, “Scale sequential processing of HRR data for target recognition”,
in preparation.

K. Riley and A.J. Devaney, “Wavelet processing of images for target detection”, International
Journal of Imaging Systems and Technology 7, p.404-420, 1996.

A.J. Devaney and B. Hiscomez, “Wavelet signal processing for radar target identification: a
scale sequential approach,” in Wavelet Applications, Harold Szu, editor, Proc. SPIE 2242,
389-399, 1994.

R. S. Raghavan et.al, “Performance of the GLRT for Adaptive Vector Subspace Detection”,
IEEE Trans. on Aerospace and Electronic Systems, 1996 (to appear).

R. S. Raghavan et.al, “Adaptive detection of signals in spherically invariant noise,” [EEE
Trans. on Signal Processing, 1996, (in Review)

J. Fridman, E.S. Manolakos, “Discrete Wavelet Transform on a SIMD massively parallel
platform”, Proc. of the International Conference on Signal Processing Applications and Tech-

nology, (ICSPAT’95), Boston, 1995.

J. Fridman, E.S. Manolakos, “On the Scalability of 2-D Discrete Wavelet Transform Al-
gorithms”, Multidimensional Systems and Signal Processing, (special issue on wavelets and
multiresolution signal processing), to appear 1996.
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e H. Liu and H. Lev-Ari, “Scale-Recursive Optimal Filtering,” CDSP Technical Report No.
TR-CDSP-94-25, Northeastern University, Dec. 1994.

¢ H. Liu and H. Lev-Ari, “Optimal Filtering in the Subband-Domain,” Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Detroit, MI, May 1995.

e 7. Korona and M.M. Kokar, “Target recognition using wavelet-based features,” in Proc. SPIE
AeroSense Conference: Wavelets, Orlando, FL, April 1996.

¢ Z. Korona and M.M. Kokar, “Model-based fusion for multisensor target recognition,” in Proc.
SPIE AeroSense Conference: Image Exploitation and Target Recognition, Orlando, FL, April
1996.
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1. Devaney—Scale Sequential HRR

In this Chapter, M-ary hypothesis testing in the wavelet domain is detailed. The application of
interest is target identification from large data base HRR radar where the hypotheses are the set of
targets with various orientations and the signal used for classification is the measured HRR return.
Decisions are made in a sequential fashion by starting at a coarse wavelet scale and proceeding
to finer scales. As the wavelet scale is increased, hypotheses are ruled out according to a pre-
defined decision criterion. Such an approach is computationally efficient and well suited to detection
problems with large signature data bases.

The following sections present two forms of a scale sequential detection algorithm. The first
form is optimal in the sense that it achieves the same error rate performance as the matched filter
detector implemented at finest scale but with significant savings in computational time. The second
form is a sub-optimal algorithm that is capable of achieving even greater computational savings
with only a marginal decrease in error rate performance.

1..1 Hypothesis Testing in the Wavelet Domain

In order to perform hypothesis testing in the wavelet domain, a wavelet based interpretation of
the log likelihood function is required. To develop such a quantity, consider the conventional log
likelihood function

L(k) = [ db [r(t) = se(®)F, (1)

where 7(t) is a measured signal (e.g., a HRR return) and si(¢t) a hypothesis (e.g., member of the
signature data base). For a sufficiently large wavelet scale J (high Nyquist sampling rate), the
Nyquist sample values 7(n) and si(n) become equal to the scaling coefficients at scale .J. We can
thus approxmate the measured return and data base signal in a scaling function expansion of the

general form
r(t) =2 ey dn(t) = 2_r(n) 43(8) (2)

n

where @7 are the scaling functions at scale J. Using the above representation for both (¢) and
sk(t) in Eq.(1), the log likelihood ratio becomes

L(k) = [ at [ ] 636 — S si(h) ()1, 3)

which, after making use of the orthonomality property of the scaling functions reduces to

L(k) = L7 (k) = 3 [y = sa(k)]*. (4)

n

In Eq.(4) the log likelihood function has been completely expressed in terms of wavelet scaling
coefficients at scale J. Using a similar approach, the log likelihood function can be expressed as a
function of the scaling coefficients and wavelet coefficients at scale J — 1. In particular, we find that

Lk)y=L'(k) = [7‘;{_1 — si_l(k)r +> [wr,‘{_l — wsi“l(k)]2

= L77YE) + wL’7 (k). (5)
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By induction, the log likelihood function can be decomposed to an arbitrary wavelet scale J, and
written as

LY (k) = Jf wl? (k) + L7 (k) (6)
i'=Jo
where
L7 (k Z[rj° — slo(k (7)
wL'( Z[wr] —ws? (k))? (8)

The above expression for the log likelihood function will be used to perform hypothesis testing in
the wavelet domain. The following section details a computationally efficient means for computing
Eq(6) for large signature databases.

1..2 Scale Sequential Hypothesis Testing

The motivation for interpreting the M-ary detection problem in the wavelet domain is to reduce
the computational cost of making a decision. For a large signature database, an optimal algorithm
which computes Eq.(1) for every hypothesis will exact a large computational cost. Such a cost will
reduce the rate at which decisions can be made. An attractive feature of Lq.(8) is that the range
of the summation decreases geometrically with decreasing scale j. This feature can be exploited
by initially testing hypotheses at a low wavelet scale and sequentially proceeding to higher scales
according to a decision criterion. By ruling out unlikely hypotheses at low wavelet scales, the “full”
log likelihood function (i.e. L7(k)) is computed over a subset of the signature database and a
computational savings is realized.

[n short, the scale sequential detection scheme can be described as follows. For a signature
database with ' hypotheses, Eq.(7) is computed for the entire signature database. A decision
criterion is employed to rule out hypotheses from consideration at the scale J,+1. The test continues
to scale J, + 1 where Eqgs.(6), (7), and (8) are used to compute L7>*!(k) for only those hypotheses
that tested positive at scale J,. Similarly, the test proceeds in a sequential fashion to higher wavelet
scales. Once the finest scale J is reached, the full log likelihood function is computed over a subset
of the signature database resulting in reduced computational cost and increased decision rate. The
following section presents the decision criterion that has been used to leave behind hypotheses while
sequentially proceeding up wavelet scales.

1..3 Scale Sequential Testing using the Stack Algorithm

As described in the previous section, once the likelihood functions are computed at a given scale, a
decision criterion is used to rule out or leave behind hypotheses from consideration at higher scales.
This section details the use of probabilistic decoding as a decision criterion.

The scale recursive detection problem can be viewed in a probabilistic decoding framework where
the encoding tree has K branches (K = number of hypotheses) stemming from the root node and
a single branch from all successive nodes. The depth of the tree is equal to the number of levels




of wavelet decomposition. The encoding tree for the scale recursive detection problem is shown in

figure 1.
scale J, scale Jy+1 scale J,+1 scale J-1 scale J
. —e ————-= pathforH,
~—e———————e path for H2
Root -
Node * e
—e——————e path for HM

Figure 1: Encoding tree for the scale recursive detection problem

The stack decoder forms a cumulative metric from a sum of branch metrics. This is entirely
analogous to the scale sequential detection problem where the likelihood function is built up by
adding the contributions from the wavelet coeflicients at each scale. The scale sequential detection
problem can now be summarized as follows:

L. Compute the wavelet decomposition of the received signal.
2. Compute LY(k) for each hypothesis and form a sorted stack.

3. Using (6) compute L*'(k) for the hypothesis having the smallest L7(k) and replace L7 (k)
with L7*1(k) in the stack.

4. Repeat step 3 until a hypothesis reaches the finest scale and is minimum. This hypothesis is
chosen as the correct hypothesis.

With the algorithm detailed, the choice of stack metric can be addressed. In this report, two
stack metrics are considered. These two metrics will be denoted L2 and L2,,., and are stated
below for a particular scale and hypothesis:

N,

(9)

(10)




where V; = 27 and ¢? is the variance of the additive white Gaussian noise (AWGN) in the received
signal.

The L2 metric is optimal with respect to error rate performance. This can be explained by
noting that L2’ is non-decreasing with increasing j. Conscquently if L27(k) is, for some hypothesis
k, minimum compared with L27(k’) for j < J and all &’ it is also minimum with respect to all &’
at the finest scale J; i.e., it remain minimum if all hypotheses arc propagated to the finest scale.
Testing all hypotheses at the finest scale corresponds to optimum M-ary detection which leads to

the conclusion the stack algorithm with the L2 metric is guaranteed to arrive at the same decision
as the optimal test.

The statistics of the L2 metric under both the correct and incorrect hypotheses are:

correct hypothesis:

mean = N,o? (11)

variance = 2.V ot

incorrect hypothesis: (k=correct hypoth. and 1=hypoth. under test)

1

\/jvj

variance = ‘2Nja“ + 40201,;:

mean = N;o? +

Dix (12)

where Dy is the Euclidean distance measure defined as

Dy =Y [s1(n) = si(n)]”. (13)

I'rom the statistics of the L2 metric it is apparent that as a hypothesis (either correct or incorrect)
is propagated to higher scales, the mean and variance will tend to increase with N;. As previously
stated, the algorithm will propagate the smallest cumulative metric. If the algorithm is propagating
the correct hypothesis, on average the cumulative metric will increase and it is likely that the correct
hypothesis will not remain at the top of the stack. This results in the algorithm propagating incorrect
hypotheses (whose metrics will also tend to increase) before returning to the correct hypothesis.
Although the algorithm will tend to propagate incorrect hypotheses with the L2 metric, under most
circumstances all incorrect hypotheses will not be propagated to the finest scale. This results in
significant computational savings while maintaining optimality.

The L2,,rm metric is sub-optimal, but it is considered because it significantly increases the com-
putational savings over the L2 metric while sacrificing a small amount of error rate performance.
The motivation behind the L2,,.» metric is to have a stack metric that remains small when prop-
agating the correct hypothesis and tends to grow when propagating an incorrect hypothesis. By

10




defining the L2,,m metric as a zero-mean, normalized version of the L2 metric along the correct
path these requirements are satisfied. The statistics of the L2,,,n» metric are stated below

correct hypothesis:

mean = 0 (14)

variance = 20

incorrect hypothesis: (k=correct hypoth. and I=hypoth. under test)

1

Vs
4o

variance = 20 + — Dy
N;

mean =

Dy (15)

where Dy, is defined as before. As required, under the correct hypothesis the L2,.,n metric has
a zero mean and constant variance. This results in the cumulative for the correct hypothesis
remaining close to zero (on average) and therefore at or near the top of the stack. Conversely,
under the incorrect hypothesis, the L2,,., metric has a mean which will diverge from zero. The
variance will also diverge but not as fast as the mean since the Dy term varies as 1/N; as opposed

to 1/@ in the expression for the mean. As a result, the algorithm will quickly dismiss an incorrect
hypothesis from the top of the stack. This facilitates the search for the correct hypothesis and once it
is found the algorithm will quickly propagate it to the finest scale and finish. This means that fewer
hypotheses are propagated than would be with the L2 metric resulting in further computational
S'dVlIlgS,

1..4 Complexity and Implementation

The detection schemes that the stack algorithm will be compared to in the following section are
strictly arithmetic. The stack algorithm on the other hand uses both arithmetic and comparison
operations. The arithmetic operations come from computing the stack metric while the comparisons
come from forming and updating the stack (i.e. sorting the stack and placing new stack metrics in
their proper locations). In order to develop a fair measure of complexity for the stack algorithm,
both of these operations must be considered. In this paper, the measure of arithmetic complexity
is taken to be FLOPs/decision. A single FLOP is assigned for each addition and multiplication.
The comparisons that are performed during the execution of the algorithm are counted by assigning
a one I'LOP penalty for each comparison. This penalty can be justified by noting that a simple
comparison between two numbers could involve taking their difference (one FLOP) and checking for
positivity. With the measure of complexity defined, the implementation and computational analysis
of the algorithm can be addressed.

W




The method of organizing and updating the stack can strongly affect the complexity of the
algorithm. The approach taken in this paper is to first sort the stack (low to high) at the coarsest
scale. Since the stack metrics are computed in a serial fashion, the sort consists of inserting each
new metric into its proper position as the stack is built up. The insertions were made using a binary
insertion algorithm which on average requires log, m comparisons where m is the size of the array
on which the insertion is performed. From this follows that the stack sort at the coarsest scale

requires
K

> log,m comparisons (16)
m=2
where K is the total number of hypotheses to be tested. As previously stated, when propagating
a hypothesis, the new stack metric (computed at the next higher wavelet scale) is placed into the
stack in the proper location. This was also accomplished using a binary insertion algorithm thus
requiring log, K comparisons for each propagation.

Evaluating the number of computations required to compute the stack metric is straightforward.
The L2 metric requires N; subtractions, N; multiplications, and N; — 1 additions resulting in the
following expression

3N; —1 FLOPs/hypothesis. (17)

Similarly the L2,,rm metric requires 3N; + 1 FLOPs/hypothesis. Since 3V; is in most cases the
dominant term, (17) is used for both metrics.

With the complexity of maintaining the stack and computing the stack metric detailed, a lower
bound on computational complexity can be derived. The lower bound will correspond to the case
where the algorithm immediately propagates the correct hypothesis to the finest scale and finishes

(i.e. no incorrect hypotheses are propagated). Using (16) and (17) this lower bound can be written
as

K J-1
T,=K[3-27 - 1]+ > logym+ 3 [3-27 — 1]+ (J = J,)log, K (18)
m=2 m=J,
where
J, = the coarsest wavelet scale
J = the finest wavelet scale
K = the total number of hypotheses.

The first two terms on the right hand side of (18) reflect the cost of computing the stack metrics
at the coarsest scale and forming the stack itself. The last two terms on the right hand side of
(18) reflect the cost of immediately propagating the correct hypothesis to the end and finishing.
The variability of the computational effort makes it difficult to derive a closed-form expression for
the expected number of computations. The analysis performed to date has been via Monte Carlo
simulation and is presented in the following section.




1..5 Scale Sequential Stack Algorithm

This section details the performance of the scale sequential stack algorithm. The performance has
been evaluated using a synthetic signature database and received signals formed by embedding an
arbitrary signature from the database in AWGN. The performance of the stack algorithm has been
computed via Monte Carlo simulation and is compared with two other detection schemes. The
comparisons are based on error rate performance, computational complexity, and computational
savings.

The first algorithm that is used for comparison is optimum M-ary detection. This algorithm is
optimal with respect to error rate performance. A decision is formed by evaluating (9) at the finest
scale (i.e. using all signal samples) for all hypotheses and choosing the hypothesis associated with
the smallest metric. Using (17), the computational complexity of the algorithm can be expressed
as

Tope = K[3-27 — 1] FLOPs (19)

where A" and J are defined as before. The second algorithm that is used for comparison employs the
wavelet decomposition as described in this paper with a different decision criterion. The decision
criterion is a pruning algorithm which is summarized by

Reject Hy if Li(k) < L7

median

Accept Hy if Li(k) > L?

median

where L7(k) is the log-likelihood at scale j and LI ... is the median log-likelihood at scale j.
All hypotheses whose log-likelihoods fall below the median at a given scale are removed from
consideration at finer scales. Using this decision criterion and (17), the computational complexity

of the pruning algorithm is given by

Tprune = K[3-2% 4 3(J — Jp)2"~" — 1] FLOPs. (20)

1..6 Performance with Synthetic Database

The error rate performance has been evaluated for the stack algorithm (both the L2 and L2.5rm
metrics) and the two algorithms detailed above. The signature database was formed from random
variables uniformly distributed over the interval [0,1]. The received signal was formed by adding
AWGN to one of the signatures in the database. For the data to follow, a library of 200 hypotheses
was used with a signal length equal to 256 samples. The performance has been computed via Monte
Carlo simulation where the seed of the random number generator was varied to insure no correlation
during the creation of the database and between Monte Carlo iterations. The error rate curves are
presented in Figure 2. As expected, the stack algorithm with the L2 metric and the optimal M-ary
test have an identical error rate performance. The stack algorithm with the L2,,,n» metric sacrifices
some error rate performance because of its sub-optimality. Additionally, Figure 2 shows that the
stack algorithm with either metric is superior in error rate performance to the pruning algorithm.
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The average number of FLOPs/decision is defined as the average number of FLOPs an algorithm
requires to choose a hypothesis. This quantity has been obtained using the same Monte Carlo
simulations used to compute the error rates. Consequently, for the data to follow the simulation
parameters are unchanged. Figure 3 displays the average FLOPs/dccision for the threc algorithms
under consideration. Once again, both the L2 and L2,,., metrics are considered for the stack
algorithm. The stack algorithm with the L2 metric offers a computational savings over the optimal
maximum likelihood test for signal-to-noise ratios (SNRs) above -5dB. These savings become quite
large above 5dB and the maximum savings occur above 20dB where the algorithm converges to its
lower computational bound (Eq.(18)) and outperforms the pruning algorithm. The stack algorithm
with the L2,,.» metric offers dramatic computational savings over the optimal M-ary test for the
entire range of SNRs considered. As expected the savings are greater than those of the L2 metric
and the algorithm converges to the lower computational bound faster (at approx. 10 dB).

The maximum computational savings offered by the stack algorithm can be best visualized be
plotting the quantity

R= FLOPs/decision for algorithm under consideration
B FLOPs/decision for optimal M-ary test.

(21)

This quantity is easily computed for the both the stack and pruning algorithms using (18), (19),
(20) and will be denoted by Rk and Ryryne respectively. For the stack algorithm, the lower
computational bound derived earlier is used for Rsyex. It should be noted that when evaluating
(21), Rstack is dependent on both K and J while Rpyune is dependent on J only (Jp is assumed fixed).
Iigures 4 and 5 display both Reck and Ryrune for a particular choice of parameters. In Figure 4,
the number of hypothesis is held constant (K = 10°) while J is varied. The stack algorithm is seen
to offer greater computational savings than the pruning algorithm for all J tested. In Figure 5,
the observation length is held constant (J = 8) while K is varied. The stack algorithm is seen
to outperform the pruning algorithm for hypothesis sets with sizes in the range [10%,10°] which is
a practical range for implementation. A more complete comparison between Rgack and Rpryne is
given in tables 1 and 2. The data has been rounded to facilitate comparison. From tables 1 and 2,
the stack algorithm is seen to always outperform the optimal test (i.e. Rsqe > 1). Additionally,
the stack algorithm outperforms the pruning algorithm (i.e. Rgiack > Rprune) for a practical range
of test parameters.
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Table 1: Rsiaer as a function of K and J

et
P DO =1 u b Wy

[ o T
DD OO U Wy

K =2 =22 =2 K=2 K=2" KN =29

1 1 1 1 1 1

2 2 2 1 1 1

4 4 3 3 2 2

5 8 7 6 5 4

7 15 14 11 9 8

8 26 27 23 19 16
9 42 53 45 38 33
9 59 101 90 76 65

10 74 184 179 152 131

10 85 311 352 304 261

10 92 474 679 606 523

Table 2: Ryrune as a function of K and J
K=2' K=22 K=22 K=2" K=92 K=28

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
6 6 6 6 6 6
10 10 10 10 10 10
17 17 17 17 17 17
30 30 30 30 30 30
53 53 53 53 53 53
96 96 96 96 96 96
176 176 176 176 176 176
323 323 323 323 323 323




2. A Multi-resolution based target detection algorithm —
R. S. Raghavan

A multi-resolution based automatic target detection/recognition algorithm decribed in our earlier
reports has been generalized to cases where a target to be detected or recognized is described only
in terms of the various scales that make up the target signature. Knowledge of the actual target
signature within each scale is not required in our formulation. The rationale behind this approach
is that target characteristics formulated in this fashion are somewhat invariant to shifts in position
and/or orientation of the target and therefore the approach provides some degree of robustness
in ensuring that targets are not missed due to mismatch between the actual target signature and
that used in the ATR algorithm. In our approach, target detection in clutter is carried out using
a generalized likelihood ratio test that detects a signal contained in a known subspace (the signal
subspace is specified completely by the scale information) embedded in clutter whose covariance
properties within each scale and across scales is unknown. The clutter covariances within each scale
and across scales are estimated using clutter data from target-free regions. Analytical expressions
for characterizing the detection and false alarm probabilities of the generalized test have been
derived. These results are further generalized to the case where the target signature is modeled as
a random vector but confined to the known subspace. The proposed scale-subspace ATR algorithm
may be simplified further if prior knowledge allows one to neglect clutter covariances across scale.
In this case, the proposed approach has several features that make it atiractive for the ATD/R
application: (i) Test for target presence in each scale associated with the signal subspace is carried
out independently, (ii) the false alarm probability for each scale may be specified independently, (iii)
the approach offers a greater degree of protection against missing a target since the exact signature
of the target is not required in the algorithm and (iv) a sequential implementation of the algorithm
may be implemented readily by starting with the hypothesis test at a scale in the signal subspace
with the lowest estimated clutter power and proceeding with the test towards scales with increasing
estimated clutter power levels.

2..1 A Summary of Results from Previous Work

The following section summarizes the main results reported in earlier reports for the sake of estab-
lishing continuity with the work reported in the next section. Our notations are briefly introduced.
These notations were introduced in an earlier report [1] and is given here so that the following
document is complete. Let z() represent a complex N-dimensional vector obtained from a given
resolution cell under test. The superscript J indicates the resolution level of the received data
(larger the value of index J, the higher the resolution). We assume that N-vectors from a set of K
secondary resolution cells or reference cells which have the same correlation properties as the test
cell vector under the clutter only hypothesis are also received. These vectors from the ¢** reference
cell for example are denoted by z(*)(3). Using the pyrimid algorithm (figure shown in previous re-
port) all the received vectors are decomposed into their various multi-resolution components. Thus
the vector z(/) is equivalently represented in terms of the components z(?, d©,d®), ... dU-1) where
d™) is the detail signal at resolution level m. The dimensions of the various vectors obtained after
the MRA are generally different. Since z(¥) is a N-dimensional vector, the dimension of vector
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dY=1 is /2, the vector dV=?) has the dimension N/4 and so on. The last vectors in the MRA (i.e.
2@ and d®) each have the dimension N/27. Obviously, we have assumed that N > 27 without

loss of generality. It is convenient to stack all the vectors obtained above in a single N-vector z.
Thus = = [z, @1 d0F _ qu-2f gu-vi)i

2..1.1 Adaptive detection in vector subspaces

Referring to the notations introduced in the previous section, let z(z) ;¢ = 1,2,.K, (K > N)
represent a set of secondary N-vectors which are assumed to be mutually independent and to have
the same statistical properties as the clutter in the primary N-vector z. Clutter in the primary
vector is modeled as a zero-mean complex Gaussian N-vector with correlation matrix R.. The
condition X' > N specified above is required in order to ensure that the estimated correlation
matrix (with no specific structure imposed) is non-singular with probability 1.

Let V' denote the vector space spanned by the set of all complex N-vectors. Let V; denote the
signal subspace (the vector subspace which is known to contain the signal if it is present). The
dimension of the signal subspace is denoted by N, and clearly 1 < N; < N. We define the subspace
V5 of dimension N — N, to be the orthogonal complement of V; in V. Thus, VNV, = 0 and
ViUVz = V. Since the signal subspace is known (as described in the previous section, the signal
subspace is the span of vectors used as basis for the relavent scales in which the signal energy is
primarily confined.) ,we assume that the components of all N-vectors have been arranged such
that the projection of a given N-vector z onto to the subspace Vj is [2],0y_y,]*. The superscript
t denotes transpose, z; is a vector with N; components and 05 is the zero-vector of length M.
Thus the projection of a given N-vector z onto the subspace V3 is given by [0}, z3]*, where z; is a
vector with NV — N, components. Therefore every N-vector z in the problem may be represented
as = = [z},z}]". We show in [1] that the generalized likelihood ratio test (GLRT) for detecting
a deterministic signal vector z, = [z%;,0%_y,]° known to belong to the subspace V| embedded in
zero-mean complex Gaussian noise is given by:

f o1
————21‘25;'221'2 > (yo—1), (22)
1+ 2,55 2,

where the quantity (yo — 1) is a predetermined threshold which as discussed below is obtained from
the specified probability of false alarm. In (22) the N, dimensional vector z;, is defined as:

212 = [21 - 51252_2122]. (23)

Also in (22) the superscript | denotes conjugate transpose. Other quantities which appear in (22)
and (23) are defined in terms of the secondary vector components z(z) and z3(z) ;7 = 1,2,...K as
follows:

K

Sn o= Z Zl(i)z:[(i)

=1
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S = Y al)()

S o= S () ()

=1
K ;
Sn = ) z(i)z (i)
=1
S12 = Su— 51255 Sa. (24)

The main aspects of the test may be summarized as follows. The secondary vectors provide
estimates of the clutter correlation and cross-correlation matrices in the two subspaces V| and V;
as shown in equation (24). These estimated matrices are needed for estimating the component of
the primary clutter vector in the signal subspace V; using the component of the primary vector in
subspace V; which is known to be signal-free. The estimated clutter vector is given by 2, = $1255, 2.
Therefore, z; 3 = z; — 3; represents a N, dimensional vector whose clutter level has been suppressed
through linear estimation and which in addition may contain the signal to be detected. Note that
the signal to be detected (if present) remains unaltered through this processing and the clutter
suppression attempts to increase the signal-to-clutter ratio in the subspace V;. Next, the residual
clutter vector in the signal subspace V] is ‘whitened’ using the estimated correlation matrix of the
residual clutter in Vj. This matrix may be shown to be proportional to S;, defined in (24). The
vector Sy ;/ 2212 represents the output of the whitening filter and the numerator of the left hand side
of (22) is the energy of the vector output of the whitening filter. The GLRT compares this quantity

(a real and non-negative scalar) to the quantity (yo — 1)(1 4 z3 S35 z2), which represents an adaptive
threshold determined from the primary and secondary clutter components in subspace V3. Note
that the equivalent of the Adaptive Matched Filter (AMF) described in [5] for the present problem
is to compare the numerator of (22) with a fixed threshold instead of the adaptive threshold used
to implement the GLRT. A block diagram summarizing these ideas is shown in Fig. 6

2..2 Summary of New Results

The new work reported here include the following:

Analytical expressions (in closed form) for the probability of detection as a function of the signal-
to-clutter ratio for the subspace algorithm.

Gencralization of the results for the case where the target signature is a random vector known to
be contained in a given subspace.

2..2.1 Probability of Detection For Subspace Algorithm

In this section we obtain analytical expressions for the probability of false alarm Pr,, and the
probability of detection Pp for the GLRT in (22). We define the following quantities for convenience:




-1,
Y22 2355 22

Y2 = 21_25[;21.% (25)

We first obtain the expression for Pp for the GLRT in (22) as a function of the signal-to-interference

|

ratio defined as: = = z; R{lzs, where z; is the signal to be detected. The probability of false alarm
is obtained by setting the signal-to-interference ratio to zero in the expression for Pp. Using upper
case symbols to denote random variables, we observe that Y = Y3, + Y] 5 under both hypotheses Hy
and H;. Let the random variable R denote 1/(14Y2;) and so Y = Yj ,+ R~ —1. Since Y} ; is a non-
negative random variable, the conditional probability of Y > (yo—1) given R =ris 1if0 < r < 1/yo.
For 1/yo < r < 1, the above conditional probability is P[RY; 2 > (ryo — 1)|R = r,1/yo < r < 1].
The probability of ¥ > (yo — 1) may be computed by removing the conditioning for the random
variable R. Thus:

PIY > (o~ DHal = [ falr)dr

+ Y fr(r)P[RY:12 > (ryo — 1)|H1, R = r,z]dr. (26)
%

The probability on the left hand side was derived in [2] and is given by:

-— - — _—— 1 — i T y
I Yo H,X =z yé‘ £ Na4i-l Yo G Yo

where, Gi(z) is related to the incomplete Gamma function I'(z,z) by:

G,(l) =eF — = - . T (28)

Also, the random variable R is Beta distributed under both hypotheses (since primary vector
components from only the subspace V,, which is signal-free, are involved). Thus,

K
(K =N+ N)(N—N, - 1)

fa(r) = A R A B R § (29)

We seek to develop an expression similar to that in [3] for the probability of RY;2 > (yo — 1)
conditioned on hypothesis Hj, signal-to-interference ratio z and R = r. By analogy with expressions
in [3] and [4] we assume that the required solution is given in the form shown below but with the
terms C;G;(zr/yo) appearing in the sum on the right hand side. The unknown coefficients C;
are then determined by substituting this expression in (26) and using (27,28,29) (details of the
integrations involved are described in [4]). Thus:

PRY12 > (yo— D)|H1,2,R=1] =

1 RAH (K — N+ N,

K~-N+N, L.
0 t=1

1- ” N, +i—1 )(yo = NG (2 fyo). (30)




The probability of detection Pp is obtained by averaging the conditional probability of detection
in (30) over the probability density function of the random variable R, given in (29). For this
purpose, we first define the function D;(.) as:

1
Di(z) = /0 Gi(zr) fr(r)dr. (31)
The probability of detection for the GLRT is given by:

1 KEH/K-N+N Nt
=1 -~ *)(yo — MDD, : 2

The probability of false alarm Pr4 is obtained by setting the signal-to-interference ratio to zero in
the above expression (D;(0) = 1) and is:
1 K-N+1 K —=N IVS
Prg=1- ' +

y(l)\'——_N.{-N, o N,+i1-1

)(yo _ 1)Ns+£-1 (3-3)

An alternate expression for the probability of false alarm which is convenient for computation is
obtained by expanding the term within the sum above in a binomial series and is given by:

1.—( 1 R'-I\_H"l _ _ o ~
Fra = (_ ) <—) 2K =N+ 1,1 =N K =N +2y57), (34)
N -1 Yo

whete N = K —(N=N,), N = N—=(N=N,) = N, and 2 Fi(e, B;7;y) is the Gauss Hypergeometric

series given by:

iy 2 (@B Y
where,
k-1
(0) = H(O—}—i) k> 1. (36)

Note that when N, = 1, the Pr4 evaluated from (34) is 1/ys ~V*! which coincides with the expres-
sion in [3]. We need to define a few quantities before the above expressions may be applied to the
case when N, = N. When N, = N, the subspace V; has dimension zero. Accordingly, we define
Yi2 =Y, Y, =0and so fr(r) = §(r —1). Thus, D;(z) in (31) is equal to Gi(z) and as a result the
Pp4 evaluated from (34) coincides with the expression in [4]. We also note that the expressions for
Pp given in (32) for N, = 1 and N, = N coincide with the expressions in [3] and [4] respectively.

2..2.2 Probability of Detection of the Subspace Algorithm for Random Signals

The probability of detecting a deterministic signal z, which is known to belong to the signal subspace
Vi using the GLRT in (22) as derived in the previous section is given in terms of the signal-to-

interference ratio z = zIRflzs as:
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1 K-~N+1 K Miot

Pp=1-—= - . -1 z_Di.? 3 37
o=l 3 (g, o= 0" D 7
where D;(.) is a function defined in (31). The above expressions for Pr4 and Pp are valid for any
dimension of the signal subspace V] between one and N (i.e. 1 < N; < N).

When the signal to be detected is a realization of a random vector Z; confined to the subspace
11, (22) 1s not the GLRT for the detection problem. In fact if the covariance matrix of the signal and
interference are both unspecified the GLRT is intractable [7]. To quantify the detection performance
of the test in (22) for the random signal case, we assume as before that the signal vector Z; is
expressed in the form [Z}; 0%_y,]*. The vector Z;; is modeled as a complex, zero-mean Gaussian
randorn vector of dimension N, with covariance matrix R,;;. The probability of detection for the
random signal case is obtained by averaging the probability in (37) which is conditioned on a given

signal-to-interference ratio X = z over the probability density function of X = ZjRi"lZs. Given
Zs = [Z% Oy_p.)', the random variable X = ZjRi'lZs is also expressed in terms of the partioned

interference covariance matrix as : X = ZLR,}?QZH, where R;j12 = R — RilzRi}éRigl. In a
manner similar to that described in [4] it may be shown that the probability density function of
the randorn variable X is determined by the eigenvalues of the matrix: R, R;Y,. Specifically, if
{\i ;i =1,2,...N,}, denote the eigenvalues of the matrix R,;R5;, then the random variable X is
statistically equivalent to the sum: Y% X\; X;, where X; are statistically independent exponentially
distributed random variables with the mean value of each random variable equal to 1. Thus,

Py = /O°° P[Yi2/(1+ Y2) > (yo — V)|X =z, H]fx(2)dz

SRR NS S P [ v )
B ycl)_{ i=1 Nti-1 v ol
where,
Di(a) = /0 Di(az)fx(z)dz. (39)

The average signal-to-interference ratio Ag, is defined as : Ay = E[Z:f R7'Z] = tr[R,R'| =
tr[Rs11 R, where tr[ ] denotes the trace operator. Since the trace of a matrix is also equal
to the sum of the eigenvalues of the corresponding matrix, the average signal-to-interference ratio is
also given by Ao = "N+ \; = E[X]. Therefore, the probability of detection for given Pra, K, N and
I < N; < N is not parameterized by the single quantity Ag-the average signal-to-interference ratio,
as in the deterministic signal case, but Pp for the random signal case depends on all the eigenvalues
Ai st =1,2,. N, through the density function fx(z) that appears in (39).

2..3 Summary

In the previous section we have generalized the adaptive subspace detection algorithm (reported
previously in [1] ) to the case when the signal to be detected is random but confined to a signal
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subspace. Analytical expressions for the detection probability are derived. To the best of our
knowledge these results are new to the field of adaptive detection theory. A more detailed version
of these results is published in an article entitled “Performance of the GLRT for Adaptive Vector
Subspace Detection,” which appears in the IEEE Transactions on Aerospace and Electronic Systems,
October 1996.
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3. Scale-Recursive Optimal Filtering — H. Lev-Ari

This rescarch has been conducted by Professor Hanoch Lev-Ari and the graduate student Hong Liu.
The results reported here are extracted from the reports: (i) H. Liu and H. Lev-Ari, “Scale-Recursive
Optimal Filtering,” CDSP Technical Report No. TR-CDSP-94-25, Northeastern University, Dec.
1994 (see also 1995 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
2076-2079, Detroit, MI, May 1995); and (ii) H. Liu and H. Lev-Ari, “Optimized Filter Banks for Ef-
ficient Subband-Domain Estimation,” CDSP Technical Report No. TR-CDSP-96-38, Northeastern
University, Feb. 1996. A journal article is currently in preparation.

Multiresolution analysis decomposes a single record into a hierarchy of signals at different scales,
i.e., into a multichannel configuration (Fig. 7). This enables the application of efficient channel-
recursive estimation techniques to construct optimal (Wiener) and adaptive filters that operate
recursively from coarse to fine scale.

Hy(z) » 1 Do |— &(m)

\ 4

Hy(z)

I Dy | &(m)

A 4
A 4

!
~—~

S
N—

Y

Hp 1(2)

Y

| Dpoy £p-1(m)

Figure 7: Subband-domain decomposition of a signal z(:).

We have developed [1] an analytical framework for the implementation of optimal filters in the
multiresolution (i.e., subband) domain. Our approach to scale-recursive optimal filtering is based on
carrying out the filtering operation in the subband domain, using a selected subset of the subband-
domain signals. This approach allows to trade-off performance for computational cost: using a
fraction of the number of subband channels we can achieve estimation errors that are close to
the theoretical minimum, and at a fraction of the cost associated with using the complete set of
subband channels. Though some results on matching wavelet-based filter banks to specific signals
have already been published [2, 3, 4, 5], previous research has not addressed the issue of cost-
performance tradeoff in subband-domain optimal estimation.

To be more specific, consider the (standard) problem of estimating a signal (say, target signature)
d(-) from a received (noisy) signal z(-). This can be accomplished by the celebrated Wiener filter
(6], which determines an optimal estimate d(-) via linear filtering operation, viz., d = T® z, where
T'(z) denotes the transfer function of the Wiener filter (Fig. 8a). In contrast, we advocate carrying




out the filtering operation in the subband domain (Fig. 8b), and using a selected subset of the

subband-domain signals &(-), viz., 3(1) =T @ 0 where

fo(m)
g0m) = | (0)

&i(m)
Here, {6;(m); 0 <i< L—1} denote the subband components of the signal d(-), 6 is a partial
subset of such channels (analogous to £¢®), T denotes the response of the subband-domain

filter, and E(i) is an estimate of &0,
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Figure 8: Linear filtering in: (a) input-domain vs. (b) subband-domain

Our approach is motivated by the consideration that Sk(-), the estimated subband components
of the desired signal d(-), are to be used as an input for further processing, such as target
detection and/or classification. Moreover, we assume that such further processing is to be done
in the subband domain as well. This dictates our choice to produce estimates of the subband
components (), rather than directly estimating d(-) itself.

We have quantified the trade-off between quality of performance and implementation cost as-
sociated with subband estimation schemes. We have demonstrated [1] how this trade-off can be
controlled by several distinct factors, including:

e Resolution level ~ total number of available subband channels.

e Channel overlap — degree of overlap between the frequency responses of subband channels. Is
determined by the choice of a “mother wavelet.”

e Utilization ratio — the fraction of available subband channels that are involved in the estimation
scheme (given by the ratio between the integer ¢ in (40) and the integer L, the total number
of available subband channels).

¢ Inter-channel estimation sparsity — the number of neighboring channels used in forming the
estimate gz() This index may range from a value of zero, which corresponds to the diagonal
estimation scheme, through a value of 1 (tridiagonal scheme), to the full-complexity variant,
which uses all subband channels.

¢ I'ilter-order, or intra-channel estimation sparsity — the number of samples from each of the
subband channels used in estimation of é;(n) for every time instant n.
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Figure 10: Structure of subband-domain (suboptimal) estimator.
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The first two factors are determined by the details of the subband decomposition scheme itself.
For instance, the level of resolution in wavelet- and wavepacket-based filter-bank configurations is
determined by the depth of the binary tree that characterizes the filter-bank, while the channel
overlap depends also on the frequency characteristics of the prototype lowpass filter: lower overlap
can be achieved by higher quality filters, but at the expense of increased computational cost. We
use a filter bank with a binary-tree configuration (Fig. 9), combined with a sparse subband-domain
estimator (Fig. 10).

The remaining three factors depend on the details of the (optimal) estimation scheme used.
The utilization ratio characterizes the subset of subband channels that are actually involved in the
estimation process: ignoring (i.e., not estimating) some of the subband components 6;(-) results in a
reduction in computational cost, combined with some degradation in overall performance. The no-
tion of estimation sparsity offers a further refinement of the same cost-performance trade-off: relying
on the relatively low overlap between non-adjacent subband channels we can significantly reduce
the cost of computing each individual subband estimate 6;(-), which suffering only minor increase
in the attendant estimation error. Finally, selecting the order of the estimation filter (including the
possibility of channel-dependent order) is get another way to control the cost-performance trade-off.
While order selection is the only degree of freedom available in classical optimal filtering, here it
combines with the other four factors to offer a much broader range of design scenarios.
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Figure 11: Cost-performance tradeoff: utilization ratio and inter-channel sparsity
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Figure 12: Cost-performance tradeoff: utilization ratio and intra-channel sparsity

In Sec. 3..1 we introduce the notions of channel overlap and estimation sparsity. We describe the
structure of a proposed subband-domain estimator that incorporates the five design factors men-
tioned earlier. In Sec. 3..2 we describe the effect of these factors on the cost-performance trade-off.
We show that utilization ratio and estimation sparsity tend to be the dominating factors in the
sense that they allow the most significant reduction of computational cost for a given level of esti-
mation error, and that the most effective cost-performance tradeoff is achieved with a memoryless,
diagonal estimator configuration, i.e., with the highest level of both inter-channel and intra-channel
sparsity (see, e.g., Figs. 11,12). Consequently, we have focused on optimizing the configuration
of the tree-structured filter bank. This means we have compared the various possible subgraphs
(actually subtrees) of the wave-packet configuration of Fig. 9 in terms of their cost-performance
tradeoft and constructed procedures for optimal selection of such subtrees.

Such a comparison can be conveniently illustrated by a tradeoff chart showing estimation error
(our measure of performance quality) vs. computational cost, as in Fig. 13. In this chart every
point (indicated by an x) represents a particular subtree, i.e., its coordinates are the estimation
error £ and the computational cost C associated with this subtree. The convex boundary curve
at the bottom of the chart characterizes the collection of optimal subtrees: the subtrees on this
curve are optimal in the sense that they minimize the cost function

J=XA+(1=-X)E , 0<A<1 (41)

which is a convex combination of the estimation error £ and the computational cost C. A particular
subtree on the boundary curve corresponds to a particular choice of the weight parameter A: as
A varies from 0 to 1, we obtain every point on the boundary curve, from bottom right to top left.
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relative error

computational cost

Figure 13: The cost-performance chart: comparison of subtrees

In Sec. 3..3 we present an algorithm for obtaining the optimal filter-bank configuration for every
specific value of the weight parameter A. The collection of such configurations obtained as A ranges
from 0 to 1 constitutes the optimal family, i.e., the subtrees that determine the boundary curve
discussed above. Since the optimal family contains a finite number of subtrees, the boundary curve
is piecewise-linear. This means that the range of values of the weight parameter X is divided
into subranges, where each subrange corresponds to a single subtree from the optimal family. Since
these subranges are not known apriori, the construction of the optimal family (as well as of the
associated boundary curve) requires a search over the entire range of A.

As an alternative, we present in Sec. 3..4 an algorithm for (approximate) determination of the
optimal family without explicit use of the weight parameter A. This means that a (subopti-
mal) boundary curve is determined in a finite number of steps, and without the need to carry an
exhaustive search in A,

3..1 Efficient Scale-Recursive Implementation

Since the subband-domain optimal filter has multichannel inputs and outputs, scale-recursiveness
is, in fact, synonymous with channel-recursiveness. Channel-recursive optimal, as well as adaptive,
schemes (for single-rate channels) have been constructed, for instance, by Ling and Proakis [7],
and by Lev-Ari (8]. However, such schemes are not directly applicable to nonuniform multirate
processing, 1.e., to the case when the decimation ratios D; of Fig. 7 are not all the same. This
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happens, for instance, in the context of wavelet-based estimation. This difficulty can be approached
in a variety of ways including, in particular, techniques that result in uniform decimation:
e Using a so-called wave-packet configuration [9, 10], which results in equal decimation ratios

D; in all channels (Fig. 9). In contrast, the better known wavelet configuration results in a
binary dilation relation between the decimation ratios, i.e., D; =2D;_; for all 1.

e Splitting higher-rate channels into multiple lower-rate channels via time-multiplexing, as
shown in Fig. 14 for the wavelet configuration.

Low 12

|- Pass
| Low 12

— &o(m)

Pass L
High N
Pass 12 &i(m)
z(n) ——
| 12 > &(m)
. | |
| High 12 :
Pass : :
: 21 12 —:»— &(m)
©Split Channel

Figure 14: Wavelet configuration of filter bank, with channel splitting

The advantages and disadvantages of each approach will be the subject of further research. In this
report we consider only the issue of statistical coupling between channels: using the wave-packet
configuration makes it possible to minimize this coupling and, consequently, to achieve significant
reduction in implementation cost.

In general, the introduction of multichannel subband-domain processing schemes results in a
mild increase of the computational cost. For instance, while the implementation of an M-th order
input-domain FIR filter requires O(M) computations per data sample, the implementation of the
equivalent subband-domain filter requires O(LLM%'IH-) = (’)(L-(M+2MH)) computations (where
L is the number of bands). This is so because the computational cost of multichannel estimation is
proportional both to the filter order, and to the square of the number of channels. However, since
the subband rate is slower (by a factor of L) than the rate of the input data, we conclude that
the computational cost of optimal (or adaptive) FIR filtering in the subband domain is O(M +
2Mpy) per input data sample. The same orders of magnitude apply also to the implementation
of adaptive multichannel FIR filters [8]. Thus, subband domain processing is comparable to input
domain processing, both in terms of the achievable performance (which is exactly the same for both
techniques), and the attendant computational cost (which is approximately the same).
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3..1.1 Inter-Channel Correlation and Overlap

Scale-recursive optimal filtering is particularly attractive because of its enhanced ability to trade-off
performance for computational cost, without altering the filter order. As explained earlier, such a
trade-off can be achieved by using a partial subset of the subband domain channels, resulting in a
dramatic reduction in computational cost. The attendant degradation in performance can be kept
relatively small by designing the filter bank so as to minimize statistical coupling between channels.

nonas

I'igure 15: Filter bank with negligible overlap between non-adjacent subband channels.

Indeed, by choosing the filters Hi(z) in such a way that H;(e/?"/) and H;(e/*™f) have negligible
overlap for all |i — 7| > 2 (Fig. 15), we find that

E{&(k) (D} ~0 , E{&(k) (D} ~0 for |z —j| =2 (42)

for all k,l.  This qualitative statement relies on the observation that the correlation between
subband channels can be expressed in terms of frequency domain integrals that involve the product
H(e”*™1)H;(e/*™f), which is assumed to be negligible for | — j| > 2.

A quantitative statement about the relation between channel overlap and correlation of subband
signals must involve the notion of channel overlap coefficients, which we have defined as

Jo |Hi(e?1)]? | H;(e?1)[? df
Pij = H2H: 2 (43)
([ 1| )
where ||H;||? := [y |Hi(e’*f)|? df. Thus, we say that the overlap between non-adjacent channels
is negligible if the corresponding overlap coeflicients are all small, viz.,
pi; €1 forall |i—j|>2 (44)

We have shown [1] that

|E{&(k) &Y < pi 1ELl ;] E |z(n)?

and

|E{8i(k) & Y| < i N N H; | VE ()2 - E ()2
In particular, if the filter-bank corresponds to a wave-packet configuration, as in Fig. 9, then || H;|| :=
|H|| =1 for all ¢, so that
|E{&(k) W)} < pis Ela(n)]?
Thus, reducing the inter-channel overlap indeed results in suppression of the correlation between
subband channels.

36




3..1.2 Diagonal and Tridiagonal Configurations

Focusing on §;, the estimate of a single subband component of d(-), we observe that under
the assumption (44), namely p; < 1 for all |¢ — 5] > 2, the linear least squares estimate of
6;(m) depends mostly on the three signals &_1(-), &(-), and &41(-), while the contribution
from the remaining elements of £(-) is negligible. Constructing an estimate of §;(m) that is
based solely on these three components of &(-) results in an order of magnitude reduction in
computational cost. The small degradation in the quality of the estimate depends on the values of
pij for |i—j| > 2 and can be minimized by appropriate design of the filter bank. The resulting
subband-domain filter 7~ is called tridiagonal, because the estimate §; depends only on the three
subband channels ¢_q, &, and &41 (Fig. 16).

i1

i

i1

Figure 16: The structure of a tridiagonal subband-domain filter.

A further simplification of the filtering configuration involves using a diagonal subband-domain
filter 7, as shown in Fig. 17.

£i-1 > i
61 > 5\i
i > gi+1

Figure 17: The structure of a diagonal subband-domain filter.
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The corresponding computational cost of implementing a diagonal or tridiagonal subband-
domain filter now becomes O(L - Miz—Mfi) = O(M 4 2My) computations per subband-domain
sample, or O(MLZMK) per input sample. In addition to this order-of-magnitude savings in com-
putational cost, using subband-domain filtering makes it possible to achieve further cost reduction
by selecting a subset of the available L subband-domain channels. This may come at the expense
of some additional degradation in performance.

3..1.3 Structure of the Subband-Domain Estimator

The construction of a (suboptimal) subband-domain estimation scheme involves the selection of
five design parameters, corresponding to the five factors that affect the cost-performance trade-off
discussed in the introduction. These five parameters are:

e The number of subband channels L, which determines the resolution level.
o The transfer function of the filter-bank, which determines the degree of channel overlap.

e The utilization ratio 7.

The inter-channel estimation order M;, which determines the estimation sparsity.

The intra-channel estimation order M,, which is the number of samples from each subband
channel used in estimation.

The inter-channel and intra-channel orders can be, in general, different from channel to channel.
However, here we consider only the uniform case, where all channels use the same inter- and intra-
channel orders.

In particular, we focus on filter-banks associated with the notion of wavelets and wave-packets.
Such filter-banks are constructed using a binary tree configuration which involves a single undeter-
mined prototype lowpass filter P(z) [9]. Thus, the resolution level of such filter-banks is determined
only by the depth of the binary tree, while the degree of channel overlap depends only on the re-
sponse of the prototype filter P(z).

We use an r-layer wave-packet-based filter-bank (Fig. 10), so that the total number of available
subband channels is L = 2. We demonstrate the effect of utilization ratio by processing only
the subset of all available channels corresponding to 1 < i < nL, where 7 can vary in the
range 1/L < n <1. We consider both inter-channel and intra-channel sparsity. The first type is
represented by two sparse estimation schemes:

¢ Diagonal estimation, in which the estimate of 6;(-) is constructed from samples of &;(-) only

(/,\/[1 = 1)

¢ Tridiagonal estimation, in which the estimate of §;(-) is constructed from samples of &(-),

£ica(-) and &iya(-) (M =3).




Together with non-sparse estimation (which uses all available channels) this gives rise to three
choices of inter-channel order, which we call “full”, “tridiagonal”, and “diagonal.” As for the intra-
channel order, we consider only two cases: (i) full, which uses all N/QT samples available from a
single channel, and (ii) memoryless, which uses a single sample (M, = 1).

We use a block-processing scheme, so that subband-domain processing is carried out at the
block-rate which is 1/N of the input signal rate, where N is the length of the input data
block (see Fig. 10). The total number of samples per subband channel (per one block of input
data) is N/QT where r is the number of layers of our wavelet-based filter bank. The use of a
block-processing scheme introduces another reduction in the overall implementation cost, since the
number of computations per one sample of the input data is reduced by a factor of N.

3..2 Cost-Performance Trade-off

In the example we consider here, the signal z(n) is generated by adding a white noise w(n) to
desired signal d(n), while d(n) is the output of a lowpass filter excited by another white noise which
is uncorrelated to w(n). We now turn to evaluate the estimation error for our example as a
function of the various design parameters. We scale the estimation error by the (square root of)
the power of the desired signal d(n), so that the resulting relative error can be compared across
examples.
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3..2.1 Effects of Utilization Ratio ()

The effect of the utilization ratio n alone is shown in Fig. 18, which involves three different levels
of the signal-to-noise ratio (SNR) in the received signal z(n). The error reduces with increasing 7,
the effect being more pronounced for high SNRs. This means that we can trade-off performance
(= estimation error) for cost (~ utilization ratio). An explicit demonstration of this trade-off is
provided in Fig. 11, where each curve corresponds to varying the value of 7.

3..2.2 Effects of Estimation Sparsity

The introduction of inter-channel sparsity into our estimation schemes results in very minor degra-
dation in performance, except when 7 is close to unity (Fig. 19). However, since sparse estimation
requires fewer computations, the cost-performance trade-off curves (Fig. 11) show a dramatic ad-
vantage for sparse schemes and, in particular, for the diagonal configuration: one can achieve a
reduction of up to an order of magnitude (i.e., a factor of 10) in computational cost for a given level
of estimation error.
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Figure 19: Effect of inter-channel sparsity

The effect of intra-channel sparsity (i.e., filter order) is similar to that of inter-channel sparsity
(Fig. 20). Again, using less samples results in an improved cost-performance trade-off (Fig. 12),
with up to 2 orders of magnitude reduction in computational cost.
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Figure 20: Effect of intra-channel sparsity

3..2.3 Effects of Resolution Level

Our block processing scheme, in which the overall number of samples remains fixed across all
resolution levels, results in estimation errors that are essentially invariant with respect to the level
of resolution (Fig. 21). However, the introduction of cost considerations complicates our analysis:
for a full (i.e., non-sparse) configuration, the cost of estimation reduces with r (the number
of layers), while the cost of subband decomposition increases with r. On the other hand, for a
diagonal (i.e., maximally-sparse) configuration, the cost of estimation remains invariant with r, but
the performance should slightly degrade with increasing r. Both cases suggest the existence of
an optimal choice for r in each particular instance: further analysis is needed to determine this
optimal choice.

3..2.4 Effects of Wavelet Choice

One example of the effects of filter-bank selection is shown in Fig. 22, where the use of two different
Daubechies wavelets is compared. While our example shows a definite preference for simpler filter
banks, more research is required in order to determine the best choice of a filter bank for a given
estimation problem.
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wavelet choice: comparing the use of Daubechies wavelets of order 3 and 5.
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3..3 Optimal Filter Bank Configuration

Our analysis of the estimation error associated with a given sparse estimation scheme [1] has resulted
in closed-form expressions which we could apply to the problem of optimal subtree selection [11].
In particular, we have shown that the estimation error associated with the memoryless, diagonal
sparse estimation scheme described in [1] can be expressed in the form

E=6+) A& A& >0
where the summation is over all the vertices (“binary splits”) of the subtree, and where AE; depends

only upon the power spectrum of the signal at the node i. Similarly, we have shown that the
computational cost associated with each subtree configuration can also be expressed in the form

C=C-3AC , AC>0

where again, the summation is over all the vertices of the subtree.

relative error

optimal point ~

computational cost

Figure 23: The cost-performance chart and the optimal boundary curve

The pair (Co,&) characterizes the empty subtree, corresponding to processing in the input
domain, i.e., no filter-bank is being used. This is the rightmost point on the optimal (boundary)
curve, corresponding to A = 0. As the subtree grows to include more and more vertices, the
computational cost reduces and the estimation error increases, resulting in (C,€) points to the
left, and above, the point (Co, &) (Fig. 23). The foregoing discussion implies that we are faced with
a graph optimization problem, where with each vertex we associate an (ordered) pair of positive
incremental costs, namely (AC;, AE;), such that the overall cost associated with a given subtree is

JA) = AC+(1=0E = MG+ (1-N&| + 3 [-AAC+(1-))Ag] (45)
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The optimization (for a given A) is carried out with respect to I, the set of vertices that determines
the subtree.

Every specific subtree of the tree-structured filter-bank of Fig. 9 results in a point in the C-
& chart (Fig. 23). The collection of all possible subtrees determines a region in this chart whose
piecewise-linear lower boundary curve is up-convex. The optimal subtree for a given A is that
boundary point where the slope of the boundary curve equals —A/(1 — X) (Fig. 23). This is so
because the tangent to the curve at this point is characterized by

d€ A

dJ = AdC+(1-N)dE = 0 TS

We have constructed an algorithm that determines the optimal subtree for a given (fixed) value of
the weight coefficient A [11], as described below.

Our algorithm is based on the observation that the cost function J(A) of (45) is additive with
respect to the vertices of the subtree. Also we restrict our search to subtrees of the complete binary
tree of a fixed depth (say r), so as to limit the set of vertices over which we need to carry out our
search. Thus, the optimal subtree can be determined by pruning, i.e., by starting with a complete
binary tree (of depth r), and removing subsets of vertices for which AJ < 0. To be more specific,
the only vertex subsets considered for removal are of the form

Vi = set of vertices that are the children of vertex & (46)

Thus, at any given stage of our pruning procedure we look for a vertex &k for which

Z AJ; <0

i€ Vk

The search begins with the leaves of the subtree and continues, layer by layer, to vertices further
away from the leaves, until one vertex with 3 AJ; < 0 is found. Having found a vertex like that
we remove (prune) all vertices in Vi and repeat our search procedure. The procedure terminates
when 3 AJ; > 0 for every subset of vertices Vi as defined in (46). The resulting subtree is a
member of the optimal family and determines a point on the boundary curve in the C-€ chart.

3..4 A “Greedy Type” Algorithm

In order to avoid the need to search over the entire range of A we introduce here an algorithm
that attempts to directly determine the corner points of the (piecewise-linear) optimal boundary
curve. We know that the endpoints of this curve are: (i) the empty subtree, which is optimal for
A =0, and yields the lowest error &; and (ii) the complete binary tree of infinite depth (i.e.,
r = o), which is optimal for A =1, and yields the lowest cost C. Thus, our algorithm starts
with the empty subtree and attempts to determine the remaining corner points one-by-one, in the
order of their appearance on the boundary curve.

To achieve this goal we increment our subtree at each step by a single vertex in such a way
that the ratio 2—5? associated with incorporating vertex ¢ into the subtree is as small as possible.
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Thus, our algorithm is locally-optimal, i.e., it is a “greedy type” algorithm. It produces a sequence
of subtrees where each member in the sequence is a subset of its immediate successor, and differs
from it by a single vertex. The piecewise-linear curve obtained by connecting the C-£ points that
represent this sequence of subtrees is not necessarily convex (or optimal). Thus, an improved curve
can be obtained by selecting the convex hull of the points determined by our greedy type algorithm
(Fig. 24). This still yields a suboptimal sequence of subtrees.
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I'igure 24: Cost-performance tradeoff: the suboptimal curve. Solid line: the convex hull; dashed
line - the output of the greedy-type algorithm.
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4.

Parallel Algorithms and Architectures for Discrete Wavelet
Transforms — Elias S. Manolakos

In this section we provide a summary of the main results obtained by Prof. Elias S. Manolakos and
his graduate students on the synthesis of parallel computational structures for the Discrete Wavelet
Transform (DWT). Improving algorithm performance through parallelism has been addressed from
two points of view: By optimizing aggregate throughput in a series of problem instances by means

of modular VLSI architectures having a small number of processing elements (PEs); and by means
of scalable algorithms for parallel supercomputers having a large number of PEs and a fixed inter-

connection network.

Our early results on the synthesis of VLSI architectures for the DWT appeared and in the

Proceedings of the SPIE Conf. on Mathematical Imaging: Wavelet Applications in Signal and
Image Processing [1] and in VLSI Signal Processing VI [2]. More detailed journal papers also
including more recent work both on the synthesis methodology introduced as well as the resulting
DWT array solutions are currently under review in the IEEE Transactions on Signal Processing

[5, 6]
Our results on the parallel scalable DWT algorithms for mesh and hypercube networks have

been accepted for publication to the special issue on wavelet based signal processing of the Journal
on Multidimensional Signal Processing [7] and will appear in 1996. Preprints of all recently accepted
publications are available on the Web coordinates: http://www.cdsp.neu.edu/info/manolakos.html.

To remain focused, in the sequel we only highlight the main points of our research findings

during the whole three year period of the grant. The technical details can be found in the above
mentioned refereed publications that are available, and have also been discussed in the submitted
annual reports (April 1994, April 1995).

4..1

Synthesis of VLSI Architectures for Discrete Wavelet Transforms

Our main objective was twofold: to understand and analyze the parallelism inherent in the DWT
algorithm, and to synthesize parallel processing structures for its computation that could be imple-
mented in VLSI. The architectures derived have:

¢ Regular structure and O(L) Processing Elements (PEs), where L is the number of wavelet

filter coeflicients (usually in the range of 4-12).

e Minimal amount of memory distributed to the processors and no global memory or inter-

processor interconnection networks that limit architectural scalability.

e Simple control distributed to the processors.

A new methodology for synthesizing distributed memory and control parallel computational

structures has been developed. It is suitable for signal processing and numerical algorithms with
partially irregular data dependencies structure, such as the DWT, that cannot be described by a
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set of Uniform or Affine Recurrence Equations (UREs, AREs). For this class of algorithms it is
known that conventional linear space-time mapping methods fail to provide efficient parallel array
solutions. Qur proposed methodology is based on constructing and applying the appropriate non-
linear index space transformations (re-indexing) that lead to a reformulation of the given algorithm
in two dimensions (i.e. using only two indices) so that after applying conventional linear space-time
mapping very efficient linear processor arrays suitable for VLSI implementation are derived. So it
can be though of as the appropriate “pre-processing” required to bring the algorithm in a more
benign form at which point the arsenal of linear mapping theory with all its known advantages can
be called to complete the synthesis successfully.

Several families of systolic and semi-systolic arrays for computing general (any number of oc-
taves) DWTs have been synthesized in that way. To the best of our knowledge they are among
the most efficient O(L)-processor solutions available in the literature, as it is also acknowledged by
others (see for example [3] page 307). By using our formal and top-down algorithm-to-architectures
synthesis approach we have been able to:

e derive behavioral models of processor arrays that can be easily translated to VHDL code

e prove analytically the correctness of the designs at the behavioral level before building any
hardware

e compare/contrast deferent candidate designs in terms of latency (parallel running time), pro-
cessors utilization and throughput

In the interest of space we will not re-iterate here on results already included in previous annual
reports or more recent publications. For example, in the April 1994 report we presented three
scalable array architectures which compute the DWT algorithm of an M-sample sequence and up
to any desired octave J. They have been named SYST, BCAST and PIPE respectively and have
been show to achieve latency of 3M/2+2(2)7~2 =2, M +27-1 43, and M/2+27~% — 2 respectively
(where M > 27 is the input sequence length, L is the number wavelet filter coefficients). Therefore
BCAST is 33% faster than SYST, and PIPE is 66% faster than SYST. Processor utilization for
SYST, BCAST and PIPE is 66%, 100% and 100% respectively.

The systematic dependence analysis and localization of the algorithm and a 3rd-octave array
solutions synthesis has appeared in the Proceedings of the SPIE Conf. on Mathematical Imaging:
Wavelet Applications in Signal and Image Processing [1] . The more general case of arrays for any
desired number of octaves J and sequences of length M > 2 have been published in VLSI Signal
Processing VI [2]. More detailed journal papers including both the methodology introduced and
the resulting array solutions have been submitted and are currently under review in the prestigious
[EEE Transactions on Signal Processing [5, 6]

4..2 Scalable Parallel Algorithms for Wavelet Transforrms on the
mesh and hypercube networks

We have also derived several parallel algorithms for 1-D and 2-D Discrete Wavelet Transforms that
exhibit very good scalability properties on different general purpose processor networks such as the
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2-D mesh and the hypercube. For example our data parallel SIMD algorithms can perform a J levels
multiresolution analysis of a length M 1-D data sequence in O(JL) time on an array of M PE’s,
where L is the number of wavelet filter coefficients. For instance, a J = 10 levels pyramid DWT
decomposition of a length M = 4096 sequence can be completed in 20.7msec on the MasPar-1 2-D
torus array [4].

We have primarily focused on parallel algorithms for the 2-D DWT for performing efficiently
multiresolution analysis of large size SAR images. We considered two slightly different versions
of the 2-D DWT, known in the literature as the Standard (S-, or Beylkin’s) and Non-standard
(NS-, or Mallat’s) forms, that are both extensively used in different applications. We mapped both
forms onto P processors under two data partitioning schemes of the input matrix M x M, namely
checkerboard (-CP) and stripped (-SP) partitioning. We are introducing a precise performance
model for the four parallel algorithmic 2-D DWT variants in order to investigate their scalability
properties on the widely used Mesh and Hypercube P-processor networks with store-and-forward
as well as cut-through routing. By scalability here we mean the ability of a parallel algorithm for
making efficient use of increasing computational resources (processors) on a given network.

We have derived the asymptotic isoefficiency function of the four algorithms, that provides a
lower bound on the rate of growth of the input problem size (in O(M?)) as a function of the
processors P, necessary to maintain a constant level of efficiency. It has been found that the two
checkerboard partitioned algorithms on the Hypercube and on the cut-through-routed Mesh are

scalable as M? = Q(P log P) (Non-standard form, NS-CP), and as M? = Q(P log? P) (Standard
form, S-CP); while on the store-and-forward-routed Mesh they are scalable as M? = Q(P3-7) (NS-

CP), and as M? = Q(Pﬁ) (S-CP), where M? is the number of elements in the input matrix, and
v € (0,1) is a parameter relating M to the number of desired octaves J in the wavelet decomposition,
as J = [ylog M].

The Standard form algorithm with stripped partitioning (S-SP) is scalable on the Hypercube
as M?* = Q(P?), and it is unscalable on the CT-routed Mesh (does not assume an isoeficiency
function). Although asymptotically the stripped partitioned algorithm S-SP on the Hypercube
would appear to be inferior to its checkerboard counterpart S-CP, a detailed analysis based on
the often ignored proportionality constants of the isoefficiency function indicates that S-SP may
actually be more efficient that S-CP over a realistic range of machine and problem sizes. A milder
form of this result holds on the Mesh, where S-SP would, asymptotically, appear to be altogether
unscalable.

Since the proportionality constants in our performance model are expressed in terms of the
computation speed (1/t.) as well as the communication parameters (t,,ts,t, the message startup,
message header and per-word transfer times, respectively) and these parameters can be accurately
estimated for a given algorithm/network pair, we can determine which algorithm/parallel machine
combination is the most cost-effective candidate for performing 2-D DWT processing for ATR/D
purposes, given the throughput requirements.

Our results have been accepted for publication to the special issue on Wavelet based signal
processing of the Journal on Multidimensional Signal Processing [7] and will appear in 1996.




5. Model-Based Target Recognition by Parameter Esti-
mation of Hierarchical Mixtures — Elias S. Manolakos

Target recognition was investigated in the framework of parameter estimation of hierarchical mixture
densities by Prof. Elias S. Manolakos and graduate students. As a result, simple hierarchical
classifiers have been developed for target/object recognition that have good detection capabilities
even in the presence of substantial target occlusion.

A modified version of the Expectation-Maximization (EM) algorithm was formulated and used
to derive recursive updating rules for the a-posteriori probabilities of a specific target being present
in the image. The EM was extended to multiple level hierarchies in order to also deal with target
translation and scale invariance. Regularizing constraints were introduced to allow reaching robust
decisions in an unsupervised manner. A local and recurrent view for the clustering algorithm that
can be easily parallelized was established after making certain approximations. The approach has
the flexibility to account for the non-stationary statistics of the input data as well as non-additive
noise models, two aspects that are very important for SAR based ATR.

Our simulation results suggest that the scheme works well even in the case of partially occluded
targets presented at scales for which templates (models) are not available. The theoretical justifica-
tion of this part of our work and the first simulation results with synthetic images have appeared in
the Proc. of the Conference on Information Systems and Sciences, Princeton, March 1996 [8] and
the April 1996 annual report. More recent results using natural images with rich background and
occluded objects are accepted and will appear at the Proceedings of IEEE International Conference
on Image Processing, October 1996 [9].

We present a brief summary of these latest results here as well. As an example of a real
world situation and to test our scheme we considered the non-trivial recognition of traffic signs in
complicated background. Since the background has no template, as a first approach, we tried to
model it crudely as an average intensity. This can be very unreliable when the background has
large variations. Sometimes we use two levels: a light and a dark level to model the background.
In any case we are faced with a situation where our model for the objects in the image is highly
reliable whereas the model for the background in very unreliable. We account for this discrepancy
in the level of our confidence in different models by introducing a “temperature” term in the error
database used as prior knowledge. The function of the temperature in our case is similar to its
function in Monte Carlo simulations except that here we choose different temperature values for the
objects/targets and the background(s) reflecting our different beliefs in their models. In particular
we use a large temperature for the background relative to the objects.

Some indicative results obtained from simulations on real images are shown in Fig. 25. Also Fig.
26 presents the results with a semi-synthetic image with a toy pony and a tool that occlude each
other. It illustrates the ability of the scheme to identify partially occluded objects in high noise.
In all these images, the regions with high intensity (white) refer to regions of high a posterior:
probability of the particular object being present.

Our experiments with real and semi-synthetic images suggest that the scheme can be used to
recognize objects in the presence of occlusion and complicated background. Furthermore the scheme
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Figure 25: (a) Original Image, Posterior pdfs for (b) Traffic Sign, (c) Dark Background and (d)
Light Background.

can handle different noise models. It is clear that a better model of the background will contribute
towards improving the quality of recognition. The ideal values for free parameters such as the
number of iterations of the EM loop, the size of the neighborhood and the value of the temperature
of the background in relation to that of the objects must be determined through cross-validation.

We are currently working on the problem of reducing the complexity particularly in memory
by implementing a hypothesis pruning technique based on the wavelet decomposition. We are also
considering better modeling of the background with the available data. We are planning to use
this approach for the the automatic recognition of ground targets from SAR images if we could get
Xpatch generated target signatures. In this way we will be able to integrate wavelet based signal
processing with simple hierarchical classifiers “attached” at the leaves of the wavelet tree for the
purpose of flexible and efficient ATR.
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(a) Original noisy Image, Posterior pdfs for (b) Pokey, (¢) Tool and (d) Background.

Figure 26
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6. M.M. Z"okar — Model-Theory Based Fusion Framework
with Application to Wavelet-Features Based Mutisen-
sor Target Recognition

In this report, we present a model-theory based fusion methodology for multisensor wavelet-features
based recognition called Automatic Multisensor Feature-based Recognition System (AMFRS). The
goal of this system is to increase accuracy of the commonly used wavelet-based recognition tech-
niques by incorporating symbolic knowledge (symbolic features) about the domain and by utilizing
a model-theory based fusion framework for multisensor feature selection.

Fusion is a process of combining (fusing) information from different sensors when there is no
physical (fusing) law indicating the correct way to combine this information [7]. A fusion problem
can be defined in terms of finding such a fusing law. Current solutions to the fusion problem
consist of numerous clever, problem-specific algorithms [5, 11]. It is not clear what unifying theory
exists behind all the fusion algorithms which would guide algorithm development. The lack of an
unifying theory results in a difficulty in comparing various fusion solutions and often results in
suboptimal solutions which negatively affect the accuracy of the multisensor recognition systems.
Additionally, fusion often increases processing time. A computer system can be easily overloaded
with data from different sensors to the degree that it cannot perform its task within the time
constraints dictated by the application. Therefore, it has become important to develop an unifying
approach for fusing/combining data from multiple sensors or from multiple measurements with
minimal computational complexity.

One of the recent research efforts to develop a unifying fusion approach is described in (7], where
a model-theory based Sensory Data Fusion System (SDFS) is proposed. The SDFS uses formal
languages to describe the world and the sensing process. Models represent sensor data, operations
on data, and relations among the data. Theories represent symbolic knowledge about the world
and about the sensors. Fusion is treated as a goal-driven operation of combining languages, models,
and theories, related to different sensors into one fused language, one fused model of the world and
one fused theory. Kokar et al. [7] formalizes the main concept of the sensor data fusion theory in
terms of models and theories. However, no algorithm for sensor data fusion is presented in [7], and
the proposed sensor data fusion approach is not tested on real tasks and real noisy data.

In this work, we apply and extend the model-theory based SDFS to a multisensor wavelet-
features based target recognition by using the AMFRS. The Discrete Wavelet Packet Decomposition
(DWPD) is used for feature extraction, and the Best Discrimination Basis Algorithm (BDBA)
and a domain theory for feature selection for each sensor. The BDBA [10] is based on a best
basis selection technique proposed by Coifman and Wickerhauser in (3]. The BDBA selects the
most discriminant basis. For the purpose of this work, the elements (wavelet coefficients) of the
most discriminant basis are considered as features. Then, the domain theories for each sensor
select interpretable wavelet features from the most discriminant basis. The wavelet features are
interpretable in terms of symbolic target features. And finally, the wavelet-features are combined
(fused) into one fused wavelet-features vector by utilizing the fused theory. The fused theory is
derived from a symbolic knowledge about the domain and a relation between the symbolic knowledge
and the most discriminant basis determined by using the BDBA. We show that the knowledge of
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Figure 27: Model-Theory Based Fusion Framework

a fused theory allows us to select the combination of features (out of many possible combinations)
which results in the increased recognition accuracy of the AMFRS. In particular, we show that
the recognition accuracy of the proposed Automatic Multisensor Feature based Recognition System
(AMFRS) is better than the recognition accuracy of a system that performs recognition using
Most Discriminant Wavelet Coefficients (MDWC) as features. The AMFRS utilizes a model-theory
framework (SDFS) for feature selection as described above, while MDWC are selected from the
range and intensity most discriminant bases using a relative entropy measure [12].

6..1 Model-Theory Based Feature Fusion

In this work, we consider only two sensors for recognition. However, all results can be easily
extended to more sensors without a loss of generality. Assume that n; features are selected from
the measurement data of Sensor I and n, features are selected from the measurement data of
Sensor 2. The goal is to combine (fuse) these features into one feature vector consisting of exactly
n features. Equivalently, we want to select n out of ny + n, features which gives us

Clrn +p,m) = ( ni +n, ) - (n1 + ny)! ()

n ny +ng — n)'n'

possible combinations. This can be a big number. For example, for n = n; = n; = 10 we have
184,756 possible combinations. Therefore, we need a tool to select, from all these combinations, the
combination of features which results in most accurate recognition decisions.

To select such a combination of features, we apply a model-theory based fusion framework shown
in Fig. 27. In particular, the knowledge of a fused theory allows us to select the right combination
of features. The fused theory is derived by using a theory fusion operator to fuse the theory T} for
Sensory and the theory T for Sensor,. There is no physical law known and therefore there is no
theory fusion operator known for fusing data from these two sensors. Instead, we derive a theory
fusion operator manually from a symbolic knowledge about the domain and a relation between the
symbolic knowledge and features determined by using the BDBA. By applying the theory fusion
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operator to the theory T and the theory T3, we derive the fused theory Ty. In the same manner,
we derive manually a model fusion operator. By applying the model fusion operator to the model
M, and the model M;, we derive the fused model M.

Fig. 28 shows a block-diagram of steps involved in the design framework for Automatic Multi-
sensor Feature-based Recognition System (AMFRS). The meaning of each block is the following:

1. Reference Database 1 and Reference Database 2 are databases of target/sound signatures.

2. DWPD & BDBA selects the most discriminant basis for both reference databases by using

Discrete Wavelet Packet Decomposition (DWPD) and Best Discrimination Basis Algorithm
(BDBA).

3. Most Discriminant Basis (MDB 1 and MDB 2) are bases with maximum discriminant power

with regard to each of the two reference databases as determined by a relative entropy dis-
criminant measure.
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. Theory Ty and Theory T3 contain the domain knowledge about features in the MDB’s which
are interpretable in terms of symbolic target/sound features, about target/sound classes, and
about relations between these features and target/sound classes.

5. Model Construction creates a model for a given domain theory.

6. Model M, and Model M, represent features selected from both sensor data, operations on
these features, and relations among these features.

7. Theory Fusion Operation fuses domain theories: the theory T} and the theory T5.
8. Model Fusion Operation fuses the model M; and the model M; into one fused model M.
9. Fused Model My represents the fused features.

10. System Implementation implements Automatic Multisensor Feature-based Recognition Sys-
tem (AMFRS) using the knowledge of the fused model M, and the reference databases for
training.

11. AMFRS is the Automatic Multisensor Feature-based Recognition System using the proposed
model-theory based wavelet-features selection (fusion) methodology.

The diagram in Fig. 28 shows that the designer of the AMFRS is given two reference databases of
target/sound signatures corresponding to two sensors. The Discrete Wavelet Packet Decomposition
(DWPD) is used to transform these signatures into a time/frequency (wavelet) domain and the
Best Discrimination Basis Algorithm (BDBA) is used to select the most discriminant basis for each
reference database. The designer also knows domain theories that contain the knowledge about
interpretable features, target classes and relations between these features and classes. Knowing
the most discriminant bases and the domain theories for each sensor, he constructs the models
for these domain theories. The knowledge of the fused theory allows the designer to select the
right combination of features. The fused theory T} is derived by using a theory fusion operator to
fuse the domain theories T} and T5. If there is no physical law known and therefore there is no
theory fusion operator known for fusing data from these two sensors, the designer derives a theory
fusion operator manually from a symbolic knowledge about the domain and a relation between the
symbolic knowledge and interpretable features. Using the fused theory, he derives manually a model
fusion operator. By applying the model fusion operator to the model M; and the model M,, the
designer derives the fused model Mj.

In the presented AMFRS methodology for feature selection (fusion), fusion operators are derived
by using reduction, expansion and union operators [2]. These reduction, expansion and union
operators are defined as follows:

¢ Reduction Operator
A language L™ is a reduction of the language L if the language L can be written as

L=IL"UX, (48)

where X is the set of symbols not included in L".
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We form a model M" for the language L” as a reduction of the model M =< A,I > for
the language L by restricting the interpretation function I = I"U I, on L = LU X to I".
Therefore

M =< AT > (49)

We form a theory (subtheory) T for the language L™ as a reduction of the theory T for the
language L by removing sentences from the theory T' which are not legal sentences of the
language L.

¢ Expansion Operator
A language L° is an expansion of the language L if the language L can be written as

[*=LUX, (50)

where X is the set of symbols not included in L.

We form a model M¢ for the language L* = LU X as an expansion of the model M =< A, I >
for the language L by giving appropriate interpretation I, to symbols in X. Therefore

Me=<AIUIL > (51)

We form a theory T for the language L® as an expansion of the theory T for the language L
by adding a set of new legal sentences of the language L to the theory T.

¢ Union Operator
A language L is a union of the languages L; and L, if the language L can be written as

L=1L,UL,. (52)

A model M =< A; R,G, z; I > for the language L is a union of the model
My, =< Ay; Ry, Gq, X151 > for the language L; and the model My, =< Ay; Ry, Gy, z9; 15 >
for the language L, if the model M can be written as

M = M1 U M2 =< A1 U Ag;Rl U Rz,Gl UGz,.’L‘l Uil!g;]l U 12 >, (53)

where R, R;, R, are relations; G, G;, G, are functions; z, z;, =, are constants; and I, I;, I,
are interpretation functions.

We form a theory T for the language L by applying a union operator to the theory 7} for the
language L; and to the theory T for the language L,. Therefore

T=T,UT, (54)

6..2 Automatic Multisensor Feature-based Recognition System

Fig. 29 shows a conceptual view of the Automatic Multisensor Feature-based Recognition System
(AMFRS) for two sensors.

The meaning of each block in the AMFRS is the following:
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. The World is a domain of the recognition problem with Sensor! and Sensor2 providing infor-

mation about the domain to the AMFRS.

Feature Extraction extracts features from measurement data using the BDBA and a model
theory framework.

Model (M,) Checking tests whether the measurement data represent a model M, of a given
theory T; of the domain.

Model (M) Checking tests whether the measurement data represent a model M; of a given
theory T5 of the domain.

Model Fusion - the fusion operators for the models M; and M,.

Model (My) Checking tests whether the fused data represent a model M; of a given theory
Ty of the domain.

Classification uses the theory T to arrive with a final recognition decision.

There are three types of information available to the AMFRS:

o the target signatures s, € S,7=1,---, K, where S is a signal space;

o classes ¢; € C, j = 1,2, of targets to be recognized, where C is a target class space;

e symbolic features b; € B for each class ¢; € C of targets, where B is a set of symbolic features.




The goal of the AMFRS is to increase the recognition accuracy by using all three types of
information in an interpretable way. The recognition accuracy is defined as

number of correct recognition decisions

recognition accuracy(%) = * 100 (55)

total number of recognition decisions

where the total number of recognition decisions is equal to the number of target signatures in a test
set. Similarly, we define misclassification rate as

number of incorrect recognition decisions

misclasst fication rate(%) = %100 = 100—recognition accura.

(56)

In this work, we investigate a method for extracting features f; € F of the signal s, € S
represented in the wavelet domain, such that these features are interpretable in terms of the symbolic
features b; € B for every target class ¢; € C. We define a recognition problem as a mapping S — C.
This mapping is composed of three mappings: (i) S — W, (ii)) W — F, and (iii)) FF — C. The
mapping S — W is determined by the Discrete Wavelet Packet Decomposition (DWPD). The
DWPD transforms a sensor signal s; € S into a time/frequency (wavelet) representation W, € W.
The mapping W — F is determined by the Best Discrimination Basis Algorithm (BDBA) and
a model-theory framework. The BDBA selects the most discriminant basis. The model checker
selects features from the most discriminant basis. Conceptually, a mapping F — C is determined
by a domain theory. The domain theory is an optimal classifier for deterministic target signatures.
To apply the domain theory to noisy target signatures, we implement it by using a backpropagation
neural network.

total number of recognition decisions

6..3 Target Recognition Scenario

As the example of a target recognition problem, we consider a version of a waveform recognition
problem, originally examined and applied to a ship recognition project in [1] and then analyzed in
[12]. The goal of this problem is to recognize the class to which a given target signature belongs,
knowing a reference database of target signatures. The reference database is synthesized using
different combinations of three basic waveforms to form three classes of target signatures.

Our formulation of the recognition problem, which is described below, differs from the original
waveform recognition problem in the following:

o the number of the measurements in the target signatures is increased from 21 in (1] and 32 in
[12] to 128;

e one additional class of target signatures is added, so that we have a four-class problem instead
of a three-class problem;

e symbolic features characteristic for each class of targets are assumed to be known;

e the recognition problem is extended to a multisensor scenario by using two reference databases
of target signatures (one for each sensor).
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Figure 30: Five Target Signatures for Each of the Four Classes of Targets in DTy

The DT reference database of target signatures (corresponding to Sensor;) was synthesized
using the waveforms

hi(z) = maz((24 — |z — 25])/2,0), (57)
ha(t) = k(i — 32), (58)
hs(i) = ha(i - 16), (59)

to generate the following four classes of target signatures:

classl = ¢;(i) = uhi(?) + (1 — w)ha(2) + €(2), (60)
class2 = ca(2) = uhy(2) + (1 — u)hs(z) + €(2), (61)
class3 = c3(1) = uha(2) + (1 — w)ha(2) + €(3), (62)

classd = ¢y(2) = (1 — u)hi(3) + €(i), (63)

where ¢ = 1,--+,128, u is a uniform random variable and €(z) are normally distributed random

variables. Fig. 30 shows five examples of target signatures for each of the four classes of targets in
DT;.

The DT, reference database of target signatures (corresponding to Sensory) was synthesized
using the following four classes of target signatures:

e(2) fori=1,---,10

classl = c3(i) = { 2uci (2 + 49) fori=11,---,69 (64)
2(1 —u)ey (¢ —69) for ¢ =70,---,128,
€(z) fore=1,---,10

class2 = c3(1) = { 2ucy(i + 49) for:=11,---,69 (65)
2(1 —u)ea(z — 69) for:=170,---,128,
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Figure 31: Five Target Signatures for Each of the Four Classes of Targets in DT

e(?) fori=1,---,10

classd = (1) = { 2ucs(i + 49) fori=11,---,69 (66)
2(1 —u)es(z —69) fori=70,---,128,
€(7) fori=1,---,10

classd = c2(i) = ¢ 2ucq(i + 49) fort=11,---,69 (67)

2(1 — u)cq(2 — 69) for ¢ =70,---,128,

where 7 = 1,--.,128, u is a uniform random variable and ¢(i) are normally distributed random
variables. Fig. 31 shows five examples of target signatures in DT, for each of the four classes of
targets.

6..4 Feature Selection for Target Recognition

Each of the target signatures in the DT reference database is transformed into the wavelet domain
using the DWPD with the Daubechies 6 compactly supported wavelets with extreme phase and
highest number of vanishing moments compatible with their support width. A complete orthonormal
Most Discriminant Basis (MDB) is selected using the BDBA. The total number of components
(wavelet coefficients) in this basis is equal to 128, i.e., it is equal to the number of samples in the
target signature. Fig. 32 shows the MDB for the DT; reference database and the discriminant
value of each component as determined by a relative entropy measure. The MDB consists of the
two subbases on the third level of the DWPD decomposition and one subbasis on the second level
of the decomposition. In order to limit the computational complexity of recognition, we apply a
domain theory (symbolic knowledge about the target signatures) for the DT} reference database
to select ny < 128 wavelet coeflicients (features) from the complete MDB. Our aim is to select
n, features that, in addition to significant discriminant power, are interpretable in terms of the
following symbolic target signature features:
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Figure 32: Most Discriminant Basis (MDB) for the DT} Reference Database

rising edges, where the value of the signal is increasing within a given time interval;

falling edges, where the value of the signal is decreasing within a given time interval;

zero edges, where the value of the signal remains around zero within a given time interval;

peaks, where the value of the signal has its local maximum.

The value of selected features indicates which one of the four symbolic features described above is
present in the target signature, while the position of selected features in the MDB indicates the
time interval within which a given symbolic feature is present in the target signature.

Below, we describe an appropriate language, a model, and a theory for Sensor;. The symbol <
is a logical symbol with the usual interpretation as a linear order relation on the universe.

1. Language L,
A feature-level language L; for Sensor; is the following:

Ly = {classly,class2y, classdy, classdy, f1,0,1,Cryy Cryy ooy Criy Crg by (68)

where

e classly,class2y,class3dy, classd, are 6-placed relation symbols (classes of targets to be
recognized using Sensory),

o f; is an 1-placed function symbol (a function that maps features’ indices into features’
values),

e 0,1 are constant symbols,

e C,Chy,...,Cy,, C,, are constant symbols (features’ indices).




2. Theory Ty
A feature-level theory T for Sensor; is the following.

classli(yo .. ys) = (Yy,..0s) (B0 = Fi(Cr)) A oo Ays = fi(Cry)) =
1<y <yp2<5y1 A 1<ys<ys <)), (69)
class2i(yo ... ys) = (Yyo,...s) (o= [1(Cr) A ... Ays = fi(Cry)) =
(1 <yo <y1/\y0<y2/\1<y5<y4<y3)), (70)
class3i(yo ... ys) = (Vio, . s) (0 = fi(Cro) A .. Ays = f1(Cyy)) =
(0=yo<y1<yz/\1<ys<y;<y3)) (71)
classdi(yo ... ys) = (Yy,.. ) (o = A(Cr) A o Ays = f1(Cry)) =
(I<yw<yp:<y Ay=ys=ys=0)), (72)
Cro S CT] S Cr; S CT3 S C"4 S CTS‘ (73)
3. Model .A/.[l
A feature-level model M, of the theory T is defined as
MI =< Aly Il >7 (74)
or as
My =< Ay;classly, class2y, class3y, classdy, f1,0,1,...,5; 1 >, (75)
where

A; ={0,...,5} is a universe of the model M,

classly, class2y, class3y, classd; C A$ are relations,

fi: A; — A, is a function,

I, is an interpretation function that maps symbols of the language L, to appropriate
relations, functions and constants in the universe Ay. It assigns relations classl; C AS,
class2; C AS, class3; C A$, and class4; C A$ in the model M; to symbols classl,,
class2y, class3;, and class4, in the language L, respectively. We use classl,, class2;,
class3y, and classd; to denote both the relation symbols in L; and the relations in M. I
also assigns a function f; : A; — A; in the model M; to a symbol f; in the language L;.
We use f; to denote both the function symbol in L; and the function in M;. And finally,
I, assigns constants 0,...,5 in the model M; to the constant symbols C,,...,C,, in
the language L, respectlvely and special constants 0,1 in the model M; to the constant
symbols 0,1 in the language L;.

The ny = 6 selected features from the most discriminant basis (MDB) using the domain theory
are shown in Fig. 33. Fig. 34 shows the relationship between the selected features and symbolic
target features in ideal, not noisy conditions. All six features, depending on their value and position,
carry the information about the type of symbolic target features and their position in a target
signature. The first three features correspond to symbolic features in the beginning part of a target
signature, while the last three features correspond to symbolic features in the middle part of a
target signature. In particular:
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Figure 33: Features Selected From the MDB for the DT} Database Using the Domain Theory

o the value of the first feature indicates the existence of a zero edge characteristic for target sig-

natures belonging to class3 or the existence of a rising edge characteristic for target signatures
belonging to classl, class2, and class4 (see Fig. 34);

o the value of the second feature indicates the existence of a peak characteristic for target signa-
tures belonging to classl or the existence of a rising edge characteristic for target signatures
belonging to class2, class3 and class4 (see Fig. 34);

e the value of the third feature indicates the existence of a rising edge characteristic for target
signatures belonging to class2 and class3 or the existence of a falling edge characteristic for
target signatures belonging to classl and class4 (see Fig. 34);

e the value of the fourth feature indicates the existence of a rising edge characteristic for target
signatures belonging to classl, the existence of a zero edge characteristic for target signatures

belonging to class4, or the existence of a falling edge characteristic for target signatures
belonging to class2 and class3 (see Fig. 34);

o the value of the fifth feature indicates the existence of a peak characteristic for target signatures
belonging to classl, the existence of a zero edge characteristic for target signatures belonging
to class4, or the existence of a falling edge characteristic for target signatures belonging to
class2 and class3 (see Fig. 34);

e the value of the sixth feature indicates the existence of a falling edge characteristic for target
signatures belonging to classl, class2 and class3, or the existence of a zero edge characteristic
for target signatures belonging to class4 (see Fig. 34).

The features selected from the MDB using the theory T are different from the Most Discriminant
Wavelet Coeflicients (MDWC) which are shown in Fig. 35.

In the same manner as for the Sensor;, we define an appropriate language, a model, and a theory
for Sensors. The symbol < is again assumed to be a logical symbol with the usual interpretation
as a linear order relation on the universe.
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Figure 34: Relationship Between the Selected Features and Symbolic Target Features for the DT}
Database

1. Language L,
A feature-level language L, for Sensor, is the following:

Ly = {classl,, class2,, class3,, classds, f3,0,1,2,Ciy, City .., Ciry Cin }, (76)

where

o classly, class2,,classd,, classd,; are 9-placed relation symbols (classes of targets to be
recognized using Sensor,),

o f; is an 1l-placed function symbol (a function that maps features’ indices into features’
values),

e 0,1,2 are constant symbols,

o Cy,Ci,...,Ci;, Ciy are constant symbols (features’ indices).

2. Theory T,
A feature-level theory T3 for Sensor; is the following.

classla(yo .- ys) <= (Yoo,..5) (%0 = f2(Cig) A .. Ays = f2(Cyy)) =
2<ypw<yp25m AN2Zys Sys<ys A
2<ye<yr A 2<ys <y7)), (77)
class2y(yo ... ys) <= (Vyo, ... vs) ((yo = fa(Ci) A .. ANys = f2(Cyy)) =
I1<p<n<ywA2<ys<ys<ys A
y7<ys <1 A yg=0)), (78)
classda(yo ... ys) <= (Vyo,...s) (0= f2(Ci,) A ... Nys = f2(Cyy)) =
C<y=n1 Ap<n AN1<y<y<ys A
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Figure 35: Most Discriminant Wavelet Coefficients (MDWC) Selected from the MDB for the DT;
Database as Features

2<y<yr AN 2<ys <)), (79)
da3342(y0 yS) N (Vyo.--- ,ys) ((yo = f2(cio) Ao ANys= f2(Cis)) =
Wo=n=y=ys=yr=ys=0 A 2<yz3<ys A

2 <ys < w))s (80)
Ci, <C;, £C,, £C, £C £C £Ci £Cy; £ 0. (81)
3. Model M,
A feature-level model M; of the theory T is defined as
A’Iz =< Az,]z >, (82)
or as
M, =< Aj;classl,, class2,, class3q, classdq, f3,0,1,...,8; I3 >, (83)
where

A; ={0,...,8} is a universe of the model M,

classly, class2,, class3,, classd; C A are relations,

f2: Az — A, is a function,

I; is an interpretation function that maps symbols of the language L, to appropriate
relations, functions and constants in the universe A,. It assigns relations classl, C A3,
class2; C A, class3, C A, and class4; C A3 in the model M; to symbols classls,
class2,, classds, and classd, in the language L, respectively. We use classl,, class2,,
class3,, class4, to denote both the relation symbols in L, and the relations in M,;. I,
also assigns a function f; : A; — A; in the model M; to a symbol f; in the language L.
We use f; to denote both the function symbol in L, and the function in M,. And finally,
I assigns constants 0,...,8 in the model M, to the constant symbols C;,,...,C;, in the
language L, respectively and special constants 0,1,2 in the model M, to the constant
symbols 0, 1,2 in the language L,.
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Figure 36: Features Selected From the MDB for the DT, Database Using the Domain Theory

The ny = 9 selected features from the MDB using the domain theory (symbolic knowledge about
the target signatures in the DT, database) are shown in Fig. 36. More details on feature selection
for Sensor, can be found in [9].

1. Fused Language L;
A feature-level fused language Ly is the following:

Ly = {classl, class2,class3, class4, f1,0,1,2,Cy,,Cy,, ..., Cp,, Cri }, (84)

where

o classl,class2,class3,class4 are 9-placed relation symbols (classes of targets to be rec-
ognized using fused data),

o f; is an l-placed function symbol (a function that maps features’ indices into features’
values),

e 0,1,2 are constant symbols,

o C4,Cp,...,Cp,Cy, are constant symbols (features’ indices).

2. Fused Theory T}
A feature-level fused theory T is the following.

classl(yo ... ys) <= (Y, .. s) (o= F(Cr) A ... Ays= f;(Cg)) =
| (1<yp<p2<y1 AN1<ys<ys <yq A
2<ys<yr A 2<ys < 7)), (85)
class2(yo ... ys) < (Yyo,..5) (o= f1(C) A ... Nys = ff(Cy,)) =
1<%t ANyp<y2 AN1<ys<ya<ys A
y7<ys <1 A ys=0)), (86)
class3(yo ... ys) = (Yyo,.. ) (o= fi(Cr) A ... Ays = f5(Cp,)) =
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1Sy A1<ys<ys<ys A
yr A 2 <ys < y7)), (87)
ys) ((yo = f1(Cr) A . Nys = fs(Ch)) =
(ISyoSysz/\ya=y4=ys=ye=y7=ys=0)), (88)
Cp<C;<Cp<Cy <0y <0y <0y £Cr <Cy, (89)

I/\ 1/\

( =
2 S
classd(yo ... ys) <= (Y,

where
Cfo = Cro /\Cfl = Crl A sz = C,-2 A Cfa = C,-3 A Cf4 = C“/\
Cf5=Cr5/\Cf6=Ci6/\Cf7_Ci7/\Cf3=Cig, (90)
f1(Cr) = [i(Cro) A f1(Cr) = fi(Cr) A f1(Cr) = F1(Cry)A
F1(Cr) = (H(Crs) A f5(Ch,) = fi(Cr) A f1(Cs) = F1(Crg) A
J1(Cr) = f2(Ci) A f5(Cr,) = fo(Ciy) A f5(C) = fo(Cy). (91)

3. Fused Model M;
A feature-level fused model My of the theory Ty is defined as

My =< AI; >, (92)

il

Oor as
M; =< A;classl, class2, class3, classd, f1,0,1,...,8;I; >, (93)

where

e A={0,...,8} is a universe of the model My,

classl C A° is a relation, where classl = classl) X classl, and classl, = classl,N (AN
{6,7,8})°,
class2 C A? is a relation, where class2 = class2; x class2}, and class2) = class2, N (AN
{6,7,8})
class3 C A? is a relation, where class3 = class3; x class3}, and class3, = class3; N (AN
{6,7,8})°,
class4 C A® is a relation, where class4 = class4; x class4;y and classd), = classd,N(AN
{6,7,8})3,

e fr: A— Ais a function, where f; = fi U f] and f} = f2 |ane,7.8)»

e [; is an interpretation function that maps symbols of the language L; to appropriate
relations, functions and constants in the universe A. It assigns relations classl C A%,
class2 C A% class3 C A®, and class4 C A® in the model M; to symbols classl, class2,
class3, and class4 in the language Ly respectively. We use classl, class2, class3, class4
to denote both the relation symbols in Ly and the relations in M;. I; also assigns a
function f;: A — A in the model My to a symbol f; in the language L;. We use f; to
denote both the function symbol in Ly and the function in M. And finally, I; assigns
constants 0,...,8 in the model My to the constant symbols Cy,,...,C}, in the language
Ly respectively and special constants 0,1,2 in the model M; to the constant symbols
0,1,2 in the language Ly.




The fused theory and fused model are used to fuse the feature vector consisting of n; = 6
features from the DT database and the feature vector consisting of n, = 9 features from the DT}
database into one fused feature vector consisting of n;y = 9 interpretable features. In particular:

o the first three fused features of this fused feature vector are the first three features selected
for Sensory, whose value indicates the existence of the first peak characteristic for target
signatures belonging to classl and class4, the existence of a rising edge characteristic for
target signatures belonging to class2, or the existence of a zero edge characteristic for target
signatures belonging to class3;

o the next three fused features are the last three features selected for Sensor;, whose value
indicates the existence of the second peak characteristic for target signatures belonging to
classl, the existence of a falling edge characteristic for target signatures belonging to class2
and class3, or the existence of a zero edge characteristic for target signatures belonging to
class4;

o the last three fused features of this fused feature vector are the first three features selected for
Sensory, whose value indicates the existence of a peak characteristic for target signatures be-
longing to classl and class3, or the existence of a zero edge characteristic for target signatures
belonging to class2 and class4.

6..5 Results of Experiments

We test the recognition accuracy of the AMFRS by using two test databases with target signatures
corresponding to the DT} and DT; reference databases. Each of the target signatures in these
databases is transformed into the wavelet domain using the DWPD. Then, we select one target
signature from each of the test databases in such a way that these two target signatures correspond
to the same target. A framework of model theory (SDFS) is used to extract features from each of
these two target signatures, and to fuse them into one combined feature vector. This feature vector
is used as an input vector into a backpropagation neural network. The backpropagation neural
network arrives with a final recognition decision.

Fig. 37 shows the resulting misclassification rates for different levels of noise for the multisensor
(using the DTy and DT, target signatures) target recognition problem. This figure also shows the
misclassification rate of the target recognition system using Most Discriminant Wavelet Coefficients
(MDWC) as features. The misclassification results show that the AMFRS has a better recognition
accuracy than a MDWC based target recognition system.

6..6 Conclusions and Future Research

A multisensor recognition methodology (AMFRS) is proposed based on features selected by uti-
lizing the Best Discrimination Basis Algorithm (BDBA), symbolic knowledge about the domain,
and a model-theory based fusion framework. The symbolic knowledge about the domain is incor-
porated into the AMFRS through a domain theory using a model-theory based fusion framework.
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Figure 37: Misclassification Rates for the Multisensor Target Recognition Using Model Theory
(AMFRS) and Most Discriminant Wavelet Coefficients (MDWC) for Feature Selection

A model of a domain theory represents a bridge between a symbolic knowledge about the domain
and measurement data.

The simulation results show that the AMFRS has a better recognition accuracy than a MDWC
based recognition system with respect to the test databases. The MDWC based target recognition
system adapts well to the training set of target signatures, but it does not have enough generalization
power to perform equally well with the test data. The MDWC used to train a classifier, in the
discussed recognition problem, are concentrated only in one time/frequency area. We are able to
increase the generalization power of the target recognition system by selecting interpretable features
which are more spread across the time/frequency domain and which capture more of symbolic target
features. To select such interpretable features, we utilize the symbolic knowledge (fused theory)
specific to the recognition problem domain.

In this work, we build the domain theory manually based on the analysis of the target signatures
in the reference database (symbolic knowledge) and the most discriminant bases determined by using
the BDBA. In the future research we are going to incorporate learning capabilities into the AMFRS.
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